1. Use transformations of the graph $y = x^4$ to graph $f(x) = 2(x + 1)^4 + 1$.

Solution:
First shift to the left by 1 unit, then scale the y-direction by 2, then shift up by 1 unit.

2. Find the polynomial function with zeros: -1 (multiplicity 2), 1 (multiplicity 2) whose graph passes through the point $(-2, 45)$.

Solution: We set $f(x) = a(x + 1)^2(x - 1)^2$ and plug in $(-2, 45)$ to solve a

Answer: $f(x) = 5(x - 1)^2(x + 1)^2$

3. For function $f(x) = x^2(x-3)(x+4)$, (1) determine the end behavior of the graph of the function,(2) find the x- and y- intercepts of the graph of the function.(3) determine the zeros and their multiplicity. Use the information to determine whether the graph crosses or touches the x-axis at each x-intercept.(4) determine the maximum number of turning points on the graph of the function(5)Use the information from (1) to (4) to draw a complete graph of the function.
Solution:
For (1), Since the highest degree term is x^4, we have $f(x) \sim x^4$.
For (2), x-intercept: (0, 0), (3, 0), (−4, 0). y-intercept: (0, 0).
For (3), $x = 0$, multiplicity 2. $x = 3$ and $x = −4$ multiplicity 1. So $f(x)$ crosses the x-axis at $x = 3$ and $x = −4$, $f(x)$ touches x-axis at $x = 0$.
For (4), since $f(x)$ has degree 4, it has at most 3 turning points, and since $f(x)$ touches x-axis at $x = 0$ and must cross x-axis at $x = −4, x = 3$, it has at least 3 turning points, so it must have 3 turning points. For (5),

4. Find the vertical, horizontal and oblique asymptotes of $H(x) = \frac{x^3 − 8}{x^2 − 5x + 6}$.

Solution:
Vertical asymptotes are given by the zeros of the denominator, so set $x^2 − 5x + 6 = 0$, we get $x = 2$ and $x = 3$, so vertical asymptotes are: $x = 2, x = 3$. There is no horizontal asymptotes since the degree of the numerator is greater the degree of the denominator.
For the oblique asymptote, if $|x|$ becomes large, $H(x) \approx \frac{x^3}{x^2} = x$, so $y = x + b$. To find b, you could do long division. The whole process could also be done by long division. You would find that the oblique asymptote is $y = x + 5$.
We could also find the equation by long division.

5. Follow the steps 1 through 7 to analyze the graph of $R(x) = \frac{x(x − 1)^2}{(x + 3)^3}$. (1) find the domain of the function. (2) write R in lowest terms.(3) find the intercepts of the graph and determine its multiplicity. (4) find vertical asymptotes and determine the behavior of R on either side of the asymptotes.(5) find horizontal for oblique asymptote. Find possible intersections of the graph of R and the asymptotes.(6) use the zeros of the numerator and denominator of R to divide the x-axis into intervals. Determine where the graph of R is above or below the x-axis by choosing a number in each interval and evaluation R there. (7) use the results obtained in steps through 6 to graph R.

2
Problem:
For (1), the domain is \(x \neq -3 \).

For (2), we have \(x(x-1)^2 = (x+3)^3 - 11x^2 - 26x - 27 \), so \(R(x) = 1 - \frac{11x^2 + 26x + 27}{(x+3)^3} \).

For (3), x-intercept: \((0,0), (1,0)\). y-intercept: \((0,0)\). Since \(x = 0 \) has multiplicity 1, \(R \) crosses the x-axis at \(x = 0 \), and since \(x = 1 \) has multiplicity 2, the graph touches the x-axis at \(x = 1 \).

For (4), vertical asymptotes is: \(x = -3 \), and the function goes to positive infinity when \(x \) approaches to \(-3\) from the left side and to negative infinity when \(x \) approaches to \(-3\) from the right side.

For (5), horizontal asymptote: \(y = 1 \), to find the intersections of the graph with the asymptote, set \(R(x) = 1 \), we get \(x(x-1)^2 = (x+3)^3 \), multiplying out, we get \(x^3 - 2x^2 + x = x^3 + 9x^2 + 27x + 27 \), so we get \(11x^2 + 26x + 27 = 0 \), and there is no real solution, so the graph doesn’t intersect the asymptote.

For (6), since \(R(-4) = 100 \), on (-\(\infty \), \(-3\)) \(R \) is positive, similarly, \(R(-1) = -\frac{1}{2} \), so on \((-3,0)\) \(R \) is negative, and \(R\left(\frac{1}{2}\right) = \frac{1}{343} \), so on \((0,1)\) \(R \) is positive, \(R(2) = \frac{2}{125} \), so on \((1, +\infty)\) \(R \) is positive.

For (7),

6. Find the rational zeros of the following polynomial and use the zeros to factor the polynomial over the real numbers.

(a) \(f(x) = x^3 + 8x^2 + 11x - 20 \).
Solution: We know that if \(\frac{p}{q} \) is a rational solution, then since our polynomial has a leading coefficient 1 and a constant term of \(-20\), we must have that \(p \) is a divisor of 20 and \(q \) is a divisor of 1, so \(q = 1 \), so we only need to check the divisors of 20, it’s easy to check that \(x = 1, x = -4 \) and \(x = -5 \) are the roots of \(f \) \((f(1) = f(-4) = f(-5) = 0) \) and since \(f \) has degree 3, these must be all the roots of \(f \). The coefficient of \(x^3 \) is 1, so we have \(f(x) = (x - 1)(x + 4)(x + 5) \).

(b) \(f(x) = x^4 - x^3 - 6x^2 + 4x + 8 \).

Solution: By the same reasoning, if \(\frac{p}{q} \) is a rational root, then \(p \) is a divisor of 8 and \(q = 1 \). It’s easy to verify that \(-1\) and \(\pm 2 \) are the roots of \(f(x) \) and since \(f \) has degree 3, these are all the roots of \(f \). The leading coefficient of \(f \) is 1 so we have \(f(x) = (x + 2)(x + 1)(x - 2) \).