Vector Problems

Let \(\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \), \(\vec{b} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \), \(\vec{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \), and \(\vec{d} = \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix} \).

1. Compute
 (a) \(\vec{a} + 2\vec{b} \)
 (b) \(||\vec{b} - \vec{d}|| \)
 (c) \(\vec{c} \cdot \vec{d} \)
 (d) the angle between \(\vec{a} \) and \(\vec{c} \)
 (e) The line through \(P(3, 2, 1) \) and parallel to \(\vec{b} \).
 (f) \(\vec{b} \times \vec{c} \)
 (g) Find a vector perpendicular to both \(\vec{c}, \vec{d} \).

2. Find the vertex \(E \) in the parallelogram \(ABCE \), where \(A(1, 0, 0), B(0, -1, 2), C(3, 2, 1) \).

3. Find real numbers \(s, t \) such that \(\vec{c} = s\vec{a} + t\vec{b} \).

4. (a) Find the equation of the line \(l \) through \(A(1, 0, 1), B(0, -2, 3) \)
 (b) Find the equation of the plane through \(A \) and perpendicular to \(l \).

5. (a) Orthogonally project \(\vec{b} \) onto \(\vec{c} \):
 Find the decomposition \(\vec{b} = \vec{b}' + \vec{b}'' \)
 (b) Orthogonally project \(\vec{c} \) onto \(\vec{b} \):
 Find the decomposition \(\vec{c} = \vec{c}' + \vec{c}'' \)

6. Find the distance of point \(D(1, 0, -3) \) from the plane \(2x - 3y + z - 5 = 0 \). Does \(D \) lie above or below the plane?

7. Do problem 6.13 number 5 with \(A(1, 0, 0), B(-3, 01), C(2, 2, 2) \).

8. Do the planes \(2x - 3y + z = 5 = 0 \) and \(-x + y + 2z - 3 = 0 \) intersect and if so, find the line of intersection.

9. Do problem 6.13 number 8 with \(A(1, 0, 0), B(-3, 01), D(2, 2, 2), E(3, 1, 2) \).