Problem 1. Suppose that \(z \) is not an integer. Prove that
\[
\sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^2} = \frac{\pi^2}{(\sin(\pi z))^2}
\]
by integrating the function
\[
f(\zeta) = \frac{\pi \cot(\pi \zeta)}{(\zeta + z)^2}
\]
over the circle \(|\zeta| = N + \frac{1}{2} \) with \(N \) an integer, \(N \geq |z| \), adding the residues of \(f \) insider the circle, and then letting \(N \) tend to infinity.

Problem 2. Prove that if \(f \) is an entire function and if there are constants \(A, B > 0 \) so that for all \(R > 0 \) and some integer \(k \) we have
\[
\sup_{|z|=R} |f(z)| \leq AR^k + B,
\]
then \(f \) is a polynomial of degree at most \(k \).

Problem 3. Let \(\{w_1, \ldots, w_N\} \) be distinct complex numbers with \(|w_j| = 1 \) for all \(1 \leq j \leq N \). Prove that there exists a complex number \(z \) with \(|z| = 1 \) so that
\[
\prod_{j=1}^{N} |z - w_j| \geq 1.
\]
Must there exist a complex number \(z_0 \) with \(|z_0| = 1 \) so that
\[
\prod_{j=1}^{N} |z_0 - w_j| = 1?
\]

Problem 4. Let \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) be the open unit disk, and let \(\mathbb{S} = \{ w \in \mathbb{C} : \Re m[w] < \frac{\pi}{2} \} \) be the horizontal strip centered at 0 with width \(\pi \).

(a) Find an explicit biholomorphic mapping from \(\mathbb{S} \) to \(\mathbb{D} \); i.e. find a holomorphic function \(\Phi : \mathbb{S} \to \mathbb{D} \) which is one-to-one and onto, and whose inverse is also holomorphic.

(b) Let \(f : \mathbb{S} \to \mathbb{S} \) be a holomorphic function with \(f(0) = 0 \). Show that
\[
\left| \frac{e^{f(z)} - 1}{e^{f(z)} + 1} \right| < \left| \frac{e^z - 1}{e^z + 1} \right|.
\]

(c) Let \(f : \mathbb{S} \to \mathbb{S} \) be a holomorphic function with \(f(0) = 0 \). What can you conclude about \(f \) if \(f'(0) = 1 \)?

Problem 5. Let \(f \) be a holomorphic function defined in the open unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \). Let \(\{x_n\} \) be an infinite sequence of distinct real numbers such that \(|x_n| < \frac{1}{2} \) for every \(n \), and suppose that \(f(x_n) \) is real for every \(n \). Prove that \(f(z) = f(\zeta) \) for every \(z \in \mathbb{D} \).

Problem 6. Let \(f \) be a holomorphic function defined in the upper half plane \(\mathbb{U} = \{ z \in \mathbb{C} : \Re m[z] > 0 \} \), and suppose that \(\Re m[f(z)] > 0 \) for all \(z \in \mathbb{U} \). Suppose also that \(f(i) = i \). What can you conclude about \(f \)?

Problem 7. Prove that the function
\[
f(z) = -\frac{1}{2} \left(z + \frac{1}{z} \right)
\]
is a biholomorphic mapping of the upper half-disk \(\mathbb{D}^+ = \{ z = x + iy : |z| < 1, y > 0 \} \) to the upper half plane \(\mathbb{U} = \{ w \in \mathbb{C} : \Re m[w] > 0 \} \).

Problem 8. Let \(\{ f_n \} \) be a sequence of holomorphic functions defined in the open unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \), and suppose that the sequence \(\{ f_n \} \) converges uniformly on compact subsets of \(\mathbb{D} \) to a limit \(F \). Suppose that the equation \(f_n(z) = 0 \) has no solution in \(\mathbb{D} \) for \(n = 1, 2, \ldots \). Prove that either \(F(z) \equiv 0 \) for all \(z \in \mathbb{D} \) or that \(F(z) = 0 \) has no solution in \(\mathbb{D} \).