Thus we see that the polar equation $r = \sin \theta$ describes a circle centered at $(0, \frac{1}{2})$ with radius $\frac{1}{2}$.

Because r represents the distance from the origin to the point, r cannot be negative. Hence for $\pi < \theta < 2\pi$, the equation $r = \sin \theta$ makes no sense because $\sin \theta$ is negative in this interval. Thus the graph of $r = \sin \theta$ contains no points corresponding to values of θ between π and 2π (in other words, the graph contains no points below the horizontal axis).

This restriction on θ to correspond to nonnegative values of r is similar to what happens when we graph the equation $y = \sqrt{x - 3}$. In graphing this equation, we do not consider values of x less than 3 because the equation $y = \sqrt{x - 3}$ makes no sense when $x < 3$. Similarly, the equation $r = \sin \theta$ makes no sense when $\pi < \theta < 2\pi$.

EXERCISES

1. $r = \sqrt{19}, \theta = 5\pi$
2. $r = 3, \theta = 2^{1000}\pi$
3. $r = 4, \theta = \frac{\pi}{2}$
4. $r = 5, \theta = -\frac{\pi}{2}$
5. $r = 6, \theta = -\frac{\pi}{4}$
6. $r = 7, \theta = \frac{\pi}{4}$
7. $r = 8, \theta = \frac{\pi}{2}$
8. $r = 9, \theta = -\frac{\pi}{2}$
9. $r = 10, \theta = \frac{\pi}{6}$
10. $r = 11, \theta = -\frac{\pi}{6}$
11. $r = 12, \theta = \frac{11\pi}{4}$
12. $r = 13, \theta = \frac{8\pi}{4}$

In Exercises 13–28, convert the rectangular coordinates given for each point to polar coordinates r and θ. Use radians, and always choose the angle to be in the interval $(-\pi, \pi)$.

13. $(2, 0)$
14. $(-\sqrt{3}, 0)$
15. $(0, -\pi)$
16. $(0, 2\pi)$
17. $(3, 3)$
18. $(4, -4)$
19. $(-5, 5)$
20. $(-6, -6)$
21. $(3, 2)$
22. $(4, 7)$
23. $(3, -7)$
24. $(6, -5)$
25. $(-4, 1)$
26. $(-2, 5)$
27. $(-5, -2)$
28. $(-3, -6)$
29. Find the center and radius of the circle whose equation in polar coordinates is $r = 3 \cos \theta$.
30. Find the center and radius of the circle whose equation in polar coordinates is $r = 10 \sin \theta$.

PROBLEMS

31. Use the law of cosines to find a formula for the distance (in the usual rectangular coordinate plane) between the point with polar coordinates r_1 and θ_1 and the point with polar coordinates r_2 and θ_2.
32. Describe the set of points whose polar coordinates are equal to their rectangular coordinates.
33. What is the relationship between the point with polar coordinates $r = 5, \theta = 0.2$ and the point with polar coordinates $r = 5, \theta = -0.2$?
34. What is the relationship between the point with polar coordinates $r = 5, \theta = 0.2$ and the point with polar coordinates $r = 5, \theta = 0.2 + \pi$?
35. Explain why the polar coordinate \(\theta \) corresponding to a point with rectangular coordinates \((x, y)\) can be chosen as follows:

- If \(x > 0 \), then \(\theta = \tan^{-1} \frac{y}{x} \).
- If \(x < 0 \), then \(\theta = \tan^{-1} \frac{y}{x} + \pi \).
- If \(x = 0 \) and \(y \geq 0 \), then \(\theta = \frac{\pi}{2} \).
- If \(x = 0 \) and \(y < 0 \), then \(\theta = -\frac{\pi}{2} \).

Furthermore, explain why the formula above always leads to a choice of \(\theta \) in the interval \([-\frac{\pi}{2}, \frac{3\pi}{2}]\).

36. Give a formula for the polar coordinate \(\theta \) corresponding to a point with rectangular coordinates \((x, y)\), similar in nature to the formula in the previous problem, that always leads to a choice of \(\theta \) in the interval \([0, 2\pi)\).

\[x = 8 \cos \frac{\pi}{4} \quad \text{and} \quad y = 8 \sin \frac{\pi}{4}. \]

Because \(\cos \frac{\pi}{4} = \frac{1}{2} \) and \(\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \), the point in question has rectangular coordinates \((4, 4\sqrt{2})\).

9. \(r = 10, \theta = \frac{\pi}{6} \)

SOLUTION We have

\[x = 10 \cos \frac{\pi}{6} \quad \text{and} \quad y = 10 \sin \frac{\pi}{6}. \]

Because \(\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \) and \(\sin \frac{\pi}{6} = \frac{1}{2} \), the point in question has rectangular coordinates \((5\sqrt{3}, 5)\).

11. \(r = 12, \theta = \frac{11\pi}{4} \)

SOLUTION We have

\[x = 12 \cos \frac{11\pi}{4} \quad \text{and} \quad y = 12 \sin \frac{11\pi}{4}. \]

Because \(\cos \frac{11\pi}{4} = -\frac{\sqrt{2}}{2} \) and \(\sin \frac{11\pi}{4} = -\frac{\sqrt{2}}{2} \), the point in question has rectangular coordinates \((-6\sqrt{2}, 6\sqrt{2})\).

WORKED-OUT SOLUTIONS to Odd-numbered Exercises

In Exercises 1–12, convert the polar coordinates given for each point to rectangular coordinates in the xy-plane.

1. \(r = \sqrt{19}, \theta = 5\pi \)

SOLUTION We have

\[x = \sqrt{19} \cos(5\pi) \quad \text{and} \quad y = \sqrt{19} \sin(5\pi). \]

Subtracting even multiples of \(\pi \) does not change the value of cosine and sine. Because \(5\pi - 4\pi = \pi \), we have \(\cos(5\pi) = \cos \pi = -1 \) and \(\sin(5\pi) = \sin \pi = 0 \). Thus the point in question has rectangular coordinates \((-\sqrt{19}, 0)\).

3. \(r = 4, \theta = \frac{\pi}{2} \)

SOLUTION We have

\[x = 4 \cos \frac{\pi}{2} \quad \text{and} \quad y = 4 \sin \frac{\pi}{2}. \]

Because \(\cos \frac{\pi}{2} = 0 \) and \(\sin \frac{\pi}{2} = 1 \), the point in question has rectangular coordinates \((0, 4)\).

5. \(r = 6, \theta = -\frac{\pi}{4} \)

SOLUTION We have

\[x = 6 \cos(-\frac{\pi}{4}) \quad \text{and} \quad y = 6 \sin(-\frac{\pi}{4}). \]

Because \(\cos(-\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \) and \(\sin(-\frac{\pi}{4}) = -\frac{\sqrt{2}}{2} \), the point in question has rectangular coordinates \((3\sqrt{2}, -3\sqrt{2})\).

7. \(r = 8, \theta = \frac{\pi}{4} \)

SOLUTION We have

\[x = 8 \cos \frac{\pi}{4} \quad \text{and} \quad y = 8 \sin \frac{\pi}{4}. \]

Because \(\cos \frac{\pi}{4} = \frac{1}{2} \) and \(\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \), the point in question has rectangular coordinates \((4, 4\sqrt{2})\).

9. \(r = 10, \theta = \frac{\pi}{6} \)

SOLUTION We have

\[x = 10 \cos \frac{\pi}{6} \quad \text{and} \quad y = 10 \sin \frac{\pi}{6}. \]

Because \(\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \) and \(\sin \frac{\pi}{6} = \frac{1}{2} \), the point in question has rectangular coordinates \((5\sqrt{3}, 5)\).

11. \(r = 12, \theta = \frac{11\pi}{4} \)

SOLUTION We have

\[x = 12 \cos \frac{11\pi}{4} \quad \text{and} \quad y = 12 \sin \frac{11\pi}{4}. \]

Because \(\cos \frac{11\pi}{4} = -\frac{\sqrt{2}}{2} \) and \(\sin \frac{11\pi}{4} = -\frac{\sqrt{2}}{2} \), the point in question has rectangular coordinates \((-6\sqrt{2}, 6\sqrt{2})\).

In Exercises 13–28, convert the rectangular coordinates given for each point to polar coordinates \(r \) and \(\theta \). Use radians, and always choose the angle to be in the interval \([-\pi, \pi]\).

13. \((2, 0)\)

SOLUTION The point \((2, 0)\) is on the positive \(x\)-axis, 2 units from the origin. Thus we have

\(r = 2, \theta = 0 \).

15. \((0, -\pi)\)

SOLUTION The point \((0, -\pi)\) is on the negative \(y\)-axis, \(\pi\) units from the origin. Thus we have

\(r = 0, \theta = -\frac{\pi}{2} \).