PRACTICE PROBLEMS

PARK, BAE JUN

Natural logarithm2

Math114 Section 307 & 309

(1) Suppose you deposit $1000 in a bank account and interest is compounded 5 times per year at annual interest rate 5%. Find the balance 5 years later.

Annual Interest rate : \(r = 0.05 \)
Each time interest rate : \(\frac{0.05}{5} = 0.01 \)
Since we compound interest 5-times per year, the balance after 1 year is \(1000 \left(1 + \frac{1}{100} \right)^5 \)
After 5 years, the balance is \(1000 \left(\left(1 + \frac{1}{100} \right)^5 \right)^5 = 1000 \left(1 + \frac{1}{100} \right)^{25} \)
\[\therefore 1000 \left(1 + \frac{1}{100} \right)^{25} \text{ dollars} \]

(2) Suppose you deposit $2000 in a bank account and interest is compounded 5 times per year at annual interest rate 7%. Find the balance 10 years later.

Annual Interest rate : \(r = 0.07 \)
Each time interest rate : \(\frac{0.07}{5} = \frac{7}{500} \)
Since we compound interest 5-times per year, the balance after 1 year is \(2000 \left(1 + \frac{7}{500} \right)^5 \)
After 10 years, the balance is \(2000 \left(\left(1 + \frac{7}{500} \right)^5 \right)^{10} = 2000 \left(1 + \frac{7}{500} \right)^{50} \)
\[\therefore 2000 \left(1 + \frac{7}{500} \right)^{50} \text{ dollars} \]
(3) Suppose you deposit $3000 in a bank account and interest is compounded 4 times per year at annual interest rate 0.03. Find the balance 7 years later.

Annual Interest rate : \(r = 0.03 \)

Each time interest rate : \(\frac{0.03}{4} = \frac{3}{400} \)

Since we compound interest 4-times per year, the balance after 1 year is \(3000(1 + \frac{3}{400})^4 \)

After 7 years, the balance is \(3000[(1 + \frac{3}{400})^4]^7 = 3000(1 + \frac{3}{400})^{28} \)

\[\therefore 3000(1 + \frac{3}{400})^{28} \text{ dollars} \]

(4) Suppose you deposit $1000 in a bank account and interest is compounded continuously at annual interest rate 5%. Find the balance 5 years later.

Since we compound interest continuously, the balance after 1 year is \(1000e^{\frac{5}{100}} \) and the balance after \(t \) years is \(1000e^{\frac{5}{100}t} \)

After 5 years, the balance is \(1000e^{\frac{5}{100}5} = 1000e^{\frac{1}{4}} = 1000e^{0.25} \)

\[\therefore 1000e^{0.25} \text{ dollars.} \]
(5) Suppose you deposit $2000 in a bank account and interest is compounded continuously at annual interest rate 7%. Find the balance 10 years later.

Since we compound interest continuously, the balance after 1 year is $2000e^{0.07}$ and the balance after t years is $2000e^{0.07t}$.

After 10 years, the balance is $2000e^{0.07\times10} = 2000e^{0.7}$

\[\therefore 2000e^{0.7} \text{ dollars.} \]

(6) Suppose you deposit $3000 in a bank account and interest is compounded continuously at annual interest rate 0.03. Find the balance 7 years later.

Since we compound interest continuously, the balance after 1 year is $3000e^{0.03}$ and the balance after t years is $3000e^{0.03t}$.

After 7 years, the balance is $3000e^{0.03\times7} = 3000e^{0.21} = 3000e^{0.21}$

\[\therefore 3000e^{0.21} \text{ dollars.} \]
(7) How much would you need to deposit in a bank account paying 4% annual interest compounded continuously so that at the end of 20 years you would have $20,000?

Let \(P \) be the initial amount.

The balance 20 years later is \(Pe^{0.04 \times 20} = Pe^{0.8} = 20,000 \)

\[\Rightarrow P = 20,000e^{-0.8} \]

\(\therefore 20,000e^{-0.8} \) dollars.

(8) Suppose a country’s population increases by a total of 3% over a two-year period. What is the continuous growth rate for this country?

Let \(P \) be the initial population and assume the continuous growth rate is \(r \) per year.

The population 2 years later is \(Pe^{2r} = P(1 + 0.03) = P \cdot 1.03 \)

\[e^{2r} = 1.03 \]

\[\Rightarrow 2r = \ln 1.03 \]

\[\Rightarrow r = \frac{1}{2} \ln 1.03 \]

\(\therefore \frac{1}{2} \ln 1.03 \) (or 50 ln 1.03%) per year
(9) About how many years does it take for money to double when compounded continuously at 3% per year?

Let \(P \) be the initial amount.

The balance \(t \) years later is \(Pe^{0.03t} = 2P \)

\[\Rightarrow e^{0.03t} = 2 \]

\[\Rightarrow 0.03t = \ln 2 \]

\[\Rightarrow t = \frac{100}{3}\ln 2 \]

\[\therefore \frac{100}{3}\ln 2 \text{ years later}. \]

(10) A bacteria colony grows to five times its original size in 3 hours. Find its continuous growth rate.

Let \(P \) be the initial size of the colony and assume its continuous growth rate is \(r \) per hour.

After 3 hours, its size is \(Pe^{3r} = 5P \)

\[e^{3r} = 5 \]

\[\Rightarrow 3r = \ln 5 \]

\[\Rightarrow r = \frac{1}{3}\ln 5 \]

\[\therefore \frac{1}{3}\ln 5 \text{ (or } \frac{100}{3}\ln 5\% \text{) per hour}. \]
(11) How much would you need to deposit in a bank account paying 7% annual interest compounded continuously so that at the end of 10 years you would have $15,000?

Let \(P \) be the initial amount.

The balance 10 years later is \(Pe^{0.07 \cdot 10} = Pe^{0.7} = 15,000 \)

\[\Rightarrow P = 15,000e^{-0.7} \]

\(\therefore 15,000e^{-0.7} \) dollars.

(12) Suppose a country’s population increases by a total of 10% over a three-year period. What is the continuous growth rate for this country?

Let \(P \) be the initial population and assume the continuous growth rate is \(r \) per year.

The population 3 years later is \(Pe^{3r} = P(1 + 0.1) = P \cdot 1.1 \)

\[e^{3r} = 1.1 \]

\[\Rightarrow 3r = \ln 1.1 \]

\[\Rightarrow r = \frac{1}{3} \ln 1.1 \]

\(\therefore \frac{1}{3} \ln 1.1 \) (or \(\frac{100}{3} \) ln 1.1%) per year
(13) About how many years does it take for money to double when compounded continuously at 5% per year?

Let \(P \) be the initial amount.

The balance \(t \) years later is \(Pe^{0.05t} = 2P \)

\[e^{0.05t} = 2 \]

\[0.05t = \ln 2 \]

\[t = \frac{100}{5} \ln 2 = 20 \ln 2 \]

\(\therefore 20 \ln 2 \) years later.

(14) A bacteria colony grows to six times its original size in 5 days. Find its continuous growth rate.

Let \(P \) be the initial size of the colony and assume its continuous growth rate is \(r \) per day.

After 5 days, its size is \(Pe^{5r} = 6P \)

\[e^{5r} = 6 \]

\[5r = \ln 6 \]

\[r = \frac{1}{5} \ln 6 \]

\(\therefore \frac{1}{5} \ln 6 \) (or \(20 \ln 6\%) \) per day.
(15) Suppose a colony of bacteria has doubled in 5 hours. What is the approximate continuous growth rate of this colony of bacteria?

\[Pe^{5r} = 2P \Rightarrow e^{5r} = 2 \Rightarrow 5r = \ln 2 \Rightarrow r = \frac{\ln 2}{5} \]

\[\therefore \text{the continuous growth rate is } \frac{\ln 2}{5} \text{ per hour. (or } \frac{100 \ln 2}{5} \approx \frac{70}{5} = 14\% \text{ per hour)} \]

(16) Suppose a colony of bacteria has doubled in 2 hours. What is the approximate continuous growth rate of this colony of bacteria?

\[Pe^{2r} = 2P \Rightarrow e^{2r} = 2 \Rightarrow 2r = \ln 2 \Rightarrow r = \frac{\ln 2}{2} \]

\[\therefore \text{the continuous growth rate is } \frac{\ln 2}{2} \text{ per hour. (or } \frac{100 \ln 2}{2} \approx \frac{70}{2} = 35\% \text{ per hour)} \]