GROUP ALGEBRAS WHOSE UNITS SATISFY A GROUP IDENTITY II

D. S. Passman

University of Wisconsin-Madison

Abstract. Let $K[G]$ be the group algebra of a torsion group G over an infinite field K, and let $U = U(G)$ denote its group of units. A recent paper of A. Giambruno, S. K. Sehgal, and A. Valenti proved that if U satisfies a group identity, then $K[G]$ satisfies a polynomial identity, thereby confirming a conjecture of Brian Hartley. Here we add a footnote to their result by showing that the commutator subgroup G' of G must have bounded period. Indeed, this additional fact enables us to obtain necessary and sufficient conditions for $U(G)$ to satisfy an identity.

§1. Introduction

Let $K[G]$ be the group algebra of a torsion group G over an infinite field K, and let $U = U(G)$ denote its group of units. Then U is said to satisfy a group identity if there exists a nontrivial word $w = w(x_1, \ldots, x_m)$ in the free group $\langle x_1, \ldots, x_m \rangle$ such that $w(u_1, \ldots, u_m) = 1$ for all $u_i \in U$. Recently, [GSV] confirmed a conjecture of Brian Hartley by showing that if U satisfies a group identity, then $K[G]$ satisfies a polynomial identity. In particular, in view of [P, Corollaries 5.3.8 and 5.3.10], G must have a large abelian section. But more can be said in this circumstance. For example, if char $K = 0$, then [GSV, Lemma 2.3] implies that G is abelian. In other words, the commutator subgroup G' has bounded period equal to 1, and $U(G)$ satisfies the identity $(x, y) = x^{-1}y^{-1}xy = 1$. We show here that a similar phenomenon occurs in characteristic $p > 0$. Note that Hartley’s conjecture for p'-groups in characteristic p was verified in the earlier paper [GJV].

For the remainder of this paper, let p be a fixed prime and let K denote a fixed infinite field of characteristic p. Recall that a group A is said to be p-abelian if its commutator subgroup A' is a finite p-group, and that, by [P, Corollary 5.3.10], the group algebra $K[G]$ satisfies a polynomial identity if and only if G has a normal p-abelian subgroup of finite index. This explains some of the group theoretic conditions which occur in part (ii) of our main result below.

\textit{2000 Mathematics Subject Classification.} 16S34.
Research supported by NSF Grant DMS-9224662.
Theorem 1.1. Let $K[G]$ be the group algebra of a torsion group G over an infinite field K of characteristic $p > 0$. If $U = U(G)$ denotes the group of units of $K[G]$, then the following are equivalent.

i. U satisfies a group identity.

ii. G has a normal p-abelian subgroup of finite index, and G' is a p-group of bounded period.

iii. U satisfies $(x, y)^p = 1$ for some $k \geq 0$.

Of course, $(iii) \Rightarrow (i)$ is trivial. Furthermore, most of $(i) \Rightarrow (ii)$ is the main result of [GSV]. Thus, our goal here is to fine tune the latter paper to obtain precise necessary and sufficient conditions for U to satisfy a group identity.

§2. The Implication $(i) \Rightarrow (ii)$

Here we assume that G is torsion and that U satisfies the group identity $w = 1$. Thus, in view of [GSV, Theorem] and [P, Corollary 5.3.10], we know that G has a normal p-abelian subgroup of finite index. In particular, G is locally finite, and [GSV, Lemma 2.3] implies that $G' = K[G]$ is a p-group.

Lemma 2.1. Suppose $U(G)$ satisfies the group identity $w = 1$. If H is any subgroup of G or if G/N is any homomorphic image of G, then $U(H)$ and $U(G/N)$ also satisfy $w = 1$.

Proof. The result for H is obvious since $U(H) \subseteq U(G)$. For G/N, let us suppose first that N is a finite p-group. Then the kernel of the epimorphism $K[G] \to K[G/N]$ is a nilpotent ideal and therefore $U(G)$ maps onto $U(G/N)$. With this, it is clear that $U(G/N)$ satisfies $w = 1$. Next, let N be a finite p'-group, and set $e = N/[N]$, where N is the sum of the elements of N in $K[G]$. Then e is a central idempotent of $K[G]$ and $eK[G] \cong K[G/N]$. As a consequence, $U(G/N)$ is isomorphic to a subgroup of $U(G)$, and therefore $U(G/N)$ also satisfies $w = 1$.

Now suppose that N is merely finite. Since N' is a p-group, it follows that N has a normal Sylow p-subgroup P. But then, $G/N = (G/P)/(N/P)$, so the result follows here by applying the preceding two special cases in turn. The general case is now a consequence of the fact that G is locally finite. Indeed, if $\bar{u}_1, \ldots, \bar{u}_m$ are units of $K[G/N]$, then there exists a finite subgroup L of G such that these units and their inverses are in the image of $K[L]$. But, by the above, we know that $U(L)$ and $U(L/(N \cap L))$ both satisfy $w = 1$, so we conclude that $w(\bar{u}_1, \ldots, \bar{u}_m) = 1$, as required. □

It is convenient to record the following well known observation.

Lemma 2.2. Let A be a normal abelian subgroup of G and suppose that G/A is cyclic of finite order q. If $G = \langle A, t \rangle$, then $G' = \langle A, t \rangle = \{ (a, t) \mid a \in A \}$ and $G' \cap \mathbb{C}_G(t)$ has period dividing q.

Proof. Since A is abelian, the map $a \mapsto (a, t) = a^{-1}a^t$ is easily seen to be an endomorphism of A with image (A, t) as given above. Note that (A, t) is normalized by A and by t, so $(A, t) \triangleleft G$. Now we can mod out by (A, t) and, since $G/(A, t)$ is center-by-cyclic, it follows that this factor group is abelian and therefore that $(A, t) = G'$. Finally, if $b = (a, t) \in (A, t) \cap C_G(t)$, then
\[b^q = b^{1+t+\cdots+t^{q-1}} = a^{(t-1)(1+t+\cdots+t^{q-1})} = a^{q-1} = 1 \]
since $t^q \in A$. \qed

We now come to the heart of the argument.

Lemma 2.3. Suppose that $G = \langle A, t \rangle$ where A is a normal abelian subgroup and where t has order q. If $U(G)$ satisfies a group identity, then G' has finite period.

Proof. We proceed by induction on q, implicitly using Lemmas 2.1 and 2.2 throughout. Suppose first that (t) has a proper subgroup $\langle s \rangle$. Then $H = \langle A, s \rangle$ is a subgroup of G with the same structure and, by induction, $H' = \langle A, s \rangle$ has finite period. Of course, $B = \langle H', s \rangle$ also has finite period, and note that B is normalized by both A and t since $(A, s) = H' \subseteq B$. Now consider $G = G/B = \langle A, \bar{t} \rangle$. Since \bar{t} has smaller order than that of t, induction again implies that G' has finite period. Thus $G'/(B \cap G')$ has finite period and the result clearly follows. In other words, it suffices to assume that (t) has no proper subgroup and therefore that q is a prime. Furthermore, we can assume that $t \notin A$ since otherwise $G = A$ is abelian and $G' = \langle 1 \rangle$. This implies that $G = A \rtimes \langle t \rangle$ is the semidirect product of A by $\langle t \rangle$.

Suppose now that $G = A \rtimes \langle t \rangle$ and that (t) has prime order q. Note that t acts on $K[A]$ by conjugation and that this action determines a trace map from $K[A]$ to $K[A] \cap Z(K[G])$ given by
\[tr(\sigma) = \sigma + \sigma^t + \cdots + \sigma^{t^{q-1}} \text{ for all } \sigma \in K[A]. \]

Here, of course, $Z(K[G])$ denotes the center of $K[G]$. Observe that $tr(\sigma)^p = tr(\sigma^p)$ and that, if $\zeta \in K[A] \cap Z(K[G])$, then $tr(\sigma \zeta) = tr(\sigma)\zeta$ and $tr(\zeta) = q\zeta$. Furthermore, if we set
\[\tau = 1 + t + \cdots + t^{q-1} \in K[G], \]
then
\[t^q = \tau, \quad t\sigma \tau = tr(\sigma)\tau \quad \text{and} \quad \tau^2 = q\tau. \]

By [GJV, Proposition 1] with $b = c$, it follows that if $\alpha, \beta \in K[G]$ with $\alpha^2 = 0 = \beta^2$, then $(\alpha\beta)^n = 0$ for some integer n depending on the word w. We can, of course, assume that $n = p^k$ is a fixed power of p. There are now two cases to consider.

Case 1. $q \neq p$.

Proof. Let $a \in A$ and observe that $\alpha = \tau a^{-1}(1-t^{-1})$ has square 0 since $(1-t^{-1})\tau = 0$. Furthermore, $qa - tr(a)$ has trace 0, so it follows that $\beta = (qa - tr(a))\tau$ also has
square 0. Thus, by the above mentioned result of [GJV], we have \((\alpha \beta)^n = 0\) with \(n = p^k\). Now \(\text{tr}(a)\) is central and \((1 - t^{-1})\tau = 0\), so

\[
\alpha \beta = \tau a^{-1}(1 - t^{-1}) \cdot (qa - \text{tr}(a))\tau = \tau a^{-1}(1 - t^{-1})qa\tau
\]

\[
= q\tau(1 - a^{-1}a't^{-1})\tau = q\tau(1 - a^{-1}a't)\tau = q(q - \text{tr}(b))\tau
\]

where \(b = a^{-1}a' = (a, t)\). Thus, since \(q(q - \text{tr}(b))\) is central and \(\tau^2 = q\tau\), we have

\[
0 = (\alpha \beta)^{p^k} = q^{p^k} (q - \text{tr}(b))^{p^k} \tau^{p^k}
\]

\[
= q^{p^k} (q^{p^k} - \text{tr}(b^{p^k}))q^{p^k - 1} \tau = q(q - \text{tr}(b^{p^k}))\tau
\]

and hence \(q = \text{tr}(b^{p^k})\). Finally, note that the group element 1 occurs in the support of the left-hand side of the latter equation, so it must also occur in the right-hand expression. But all group elements in \(\text{tr}(b^{p^k})\) are conjugate to \(b^{p^k}\), and therefore we conclude that \(1 = b^{p^k} = (a, t)^{p^k}\), as required. \(\square\)

Case 2. \(q = p\).

Proof. Again let \(a \in A\) and note that both \(\tau\) and \(a^{-1}\tau a\) have square 0 since \(q = p\). Consider \(\alpha = a^{-1}\tau a \cdot \tau = a^{-1} \text{tr}(a)\tau\) and observe that

\[
\alpha^2 = a^{-1} \text{tr}(a)\tau \cdot a^{-1} \text{tr}(a)\tau = \text{tr}(a^{-1}) \text{tr}(a) \cdot a^{-1} \text{tr}(a)\tau = \text{tr}(a^{-1}) \text{tr}(a)\alpha.
\]

Thus, by induction, we have

\[
\alpha^i = [\text{tr}(a^{-1}) \text{tr}(a)]^{i-1} \alpha,
\]

and hence, if \(p^k\) is as above, then

\[
0 = \tau \alpha^{p^k} = [\text{tr}(a^{-1}) \text{tr}(a)]^{p^k - 1} \tau \cdot \alpha
\]

\[
= [\text{tr}(a^{-1}) \text{tr}(a)]^{p^k - 1} \tau \cdot a^{-1} \text{tr}(a)\tau = [\text{tr}(a^{-1}) \text{tr}(a)]^{p^k} \tau.
\]

Therefore we conclude that

\[
0 = [\text{tr}(a^{-1}) \text{tr}(a)]^{p^k} = \text{tr}(b^{-1}) \text{tr}(b)
\]

where \(b = a^{p^k}\).

Now observe that

\[
0 = \text{tr}(b^{-1}) \text{tr}(b) = (b^{-1} + b^{-t} + \cdots + b^{-t^{p-1}})(b + b^t + \cdots + b^{t^{p-1}})
\]

\[
= \sum_{i=0}^{p-1} \text{tr}(b^{-1}b^{t^i})
\]
and hence, since \(\text{tr}(b^{-1}b^t) = p1 = 0 \), we have

\[
0 = \sum_{i=1}^{p-1} \text{tr}(b^{-1}b^t) = \sum_{i \neq j} b^{-t_i}b^{t_j}.
\]

Note that the right-hand expression above is the sum of \(p(p - 1) \) formally different group elements. Thus, for this sum to be zero in \(K[G] \), these support elements must be equal in groups of size \(p \). In particular, they can take on at most \(p - 1 \) distinct values. But the conjugates of \(b^{-1}b^t \) which appear in \(\text{tr}(b^{-1}b^t) \) are either all equal or they take on \(p \) distinct values and, as we just observed, the latter situation cannot occur. Thus \(b^{-1}b^t \in (A, t) \cap C_G(t) \) and the preceding lemma yields

\[
1 = (b^{-1}b^t)^p = (a^{-p^k}a^{p^kt})^p = (a^{-1}a^t)^{p^{k+1}} = (a, t)^{p^{k+1}}.
\]

In other words, every element of \(G' = (A, t) \) has period dividing \(p^{k+1} \), and the lemma is proved. \(\square \)

The remainder of the proof is now routine and quite quick.

Lemma 2.4. \((i) \Rightarrow (ii)\).

Proof. Here we assume that \(U(G) \) satisfies a group identity, so [GSV, Theorem] and [P, Corollary 5.3.10] imply that \(G \) has a normal \(p \)-abelian subgroup \(A \) of finite index. Furthermore, by [GSV, Lemma 2.3], \(G' \) is a \(p \)-group. Thus the goal here is to show that \(G' \) has bounded period. Since \(A' \) is a finite normal \(p \)-subgroup of \(G \), it clearly suffices to consider \(G/A' \), or equivalently we can assume that \(A \) is abelian. Now let

\[
B = \langle L' \mid A \subseteq L \subseteq G \text{ and } L/A \text{ is cyclic} \rangle.
\]

Then, by Lemma 2.3, \(B \) is a subgroup of \(A \) generated by a finite number of groups each of finite period. Hence, since \(A \) is abelian, \(B \) also has finite period. Furthermore, \(B \triangleleft G \) and \(B \subseteq G' \). Finally, observe that \(A/B \) is a central subgroup of \(G/B \) of finite index, and therefore \(G/B \) has a finite commutator subgroup by [P, Lemma 4.1.4]. In other words, \(G'/B \) is finite, and this obviously implies that \(G' \) has finite period. \(\square \)

§3. The Implication (ii) \Rightarrow (iii)

The goal now is to show that the group theoretic conditions of part (ii) imply that \(U(G) \) satisfies a particular group identity, namely \(1 = (x, y)^{p^k} = (x^{-1}y^{-1}xy)^{p^k} \) for some \(k \geq 0 \). If \(R \) is any \(K \)-algebra, let \(U(R) \) denote its group of units. For convenience, we first observe
Lemma 3.1. Let R be a K-algebra and let I be an ideal of R which is nil of bounded degree $\leq p^k$. If $U(R/I)$ satisfies $(x, y)^{p^j} = 1$, then $U(R)$ satisfies $(x, y)^{p^j + k} = 1$.

Proof. The map $\bar{\cdot}: R \to R/I$ yields a group homomorphism $\bar{\cdot}: U(R) \to U(R/I)$ which is not necessarily onto. If $x, y \in U(R)$, then $\bar{x}, \bar{y} \in U(R/I)$, so $(\bar{x}, \bar{y})^{p^j} = 1$. Hence $(x, y)^{p^j} - 1 \in I$, so this element is nilpotent of degree $\leq p^k$, and consequently

$$(x, y)^{p^j + k} - 1 = [(x, y)^{p^j} - 1]^p = 0,$$

as required. □

Next, we need

Lemma 3.2. Let A be a normal abelian subgroup of G of finite index n and let I be a G-stable ideal of $K[A]$ which is nil of bounded degree $\leq p^k$. Then $I : K[G]$ is an ideal of $K[G]$ which is nil of bounded degree $\leq np^k$.

Proof. Let g_1, g_2, \ldots, g_n be coset representatives for A in G and, for any $\alpha \in K[G]$, write $g_i \alpha = \sum_j \alpha_{i,j} g_j$ with $\alpha_{i,j} \in K[A]$. Then we know from [P, Lemma 5.1.10] that the map $\alpha \mapsto [\alpha_{i,j}]$ is an algebra embedding of $K[G]$ into the ring $M_n(K[A])$ of $n \times n$ matrices over the commutative algebra $K[A]$. Furthermore, if $\alpha \in I : K[G]$, then $g_i \alpha \in I : K[G]$, so each $\alpha_{i,j} \in I$. In other words, $I : K[G]$ embeds in $M_n(I)$. As a consequence, it suffices to show that $M_n(I)$ is nil of bounded degree $\leq np^k$. To this end, let $\tau \in M_n(I)$. Then τ satisfies its characteristic polynomial, so

$$\tau^n = \gamma_0 + \gamma_1 \tau + \cdots + \gamma_{n-1} \tau^{n-1}$$

for suitable scalars $\gamma_i \in I$. Thus, since all these elements commute and since $\gamma_i^{p^k} = 0$, we have

$$\tau^{np^k} = \gamma_0^{p^k} + \gamma_1^{p^k} \tau^{p^k} + \cdots + \gamma_{n-1}^{p^k} \tau^{np^k} = 0,$$

and the result follows. □

Finally, we can prove

Lemma 3.3. (ii) \Rightarrow (iii).

Proof. By assumption, G has a normal p-abelian subgroup A of finite index and G' is a p-group of bounded period $\leq p^j$. The goal is to show that $U(G)$ satisfies an identity of the form $(x, y)^{p^k} = 1$ for some $k \geq 0$. To start with, $A' \triangleleft G$ and we know that the kernel of the homomorphism $K[G] \to K[G/A']$ is nilpotent since A' is a finite p-group. Thus, by Lemma 3.1, it suffices to consider G/A', or equivalently we can assume that A is abelian.
Next, if \(B = (A, G) \), then \(B \) is a normal subgroup of \(G \) contained in \(A \cap G' \). Thus \(B \) is a \(p \)-group of period \(\leq p^j \) and, since \(A \) is abelian, it is easy to see that the kernel \(I \) of the homomorphism \(K[A] \to K[A/B] \) is nil of bounded degree \(\leq p^j \). Indeed, if \(b_i \in B \) and if \(\alpha_i \in K[A] \), then

\[
\left[\sum_i (1 - b_i)\alpha_i \right]^{p^j} = \sum_i (1 - b_i^{p^j})\alpha_i^{p^j} = 0
\]

since \(b_i^{p^j} = 1 \). Furthermore, \(I \) is a \(G \)-stable ideal of \(K[A] \) and therefore, by Lemma 3.2, \(I \cdot K[G] \) is a nil ideal of \(K[G] \) of bounded degree. In particular, since \(I \cdot K[G] \) is the kernel of the homomorphism \(K[G] \to K[G/B] \), it suffices to consider \(G/B \), or equivalently we can now assume that \(A \) is central.

Finally, it follows from [P, Lemma 4.1.4] that \(G' \) is finite and therefore that \(G \) is a \(p \)-abelian group. Again, this implies that the kernel of the map \(K[G] \to K[G/G'] \) is nilpotent so, by Lemma 3.1, we can now assume that \(G' = \{1\} \). But then \(K[G] \) is a commutative algebra, and consequently \(U(G) \) satisfies \((x, y) = 1 \). With this, the lemma is proved.

Since the implication \((iii) \Rightarrow (i)\) is trivial, Lemmas 2.4 and 3.3 combine to yield Theorem 1.1.

REFERENCES

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

E-mail address: passman@math.wisc.edu