1. a. Suppose G is a subgroup of $A = \text{Alt}_7$. Then $|A : G| = (7!/2)/(2^3 \cdot 3^2 \cdot 7) = 5$. By the $n!$-Theorem, A must have a proper normal subgroup of index $\leq 5!$. But A is simple and $|A| > 5!$, so this is a contradiction.

b. By the Sylow theorems, $n_3 \equiv 1(3)$ and $n_3 | 2^3 \cdot 7$. The possibilities are $n_3 = 1, 4, 7$ or 28. Since G is simple, we cannot have $n_3 = 1$. If $n_3 = 4$, then the $n!$-Theorem implies that G has a proper normal subgroup of index $\leq 4!$. But G is simple and $|G| > 4!$, so this is impossible. Next, if $n_3 = 7$, then the $n!$-Theorem and the simplicity of G imply that G is embedded isomorphically in $S = \text{Sym}_7$. Furthermore, if $A = \text{Alt}_7$, then $A \triangleleft S$ implies that $(G \cap A) \triangleleft G$ with $|G : G \cap A| \leq 2$. Since G is simple, we conclude that $G = G \cap A$, so $G \subseteq A$ and this contradicts the conclusion of part (a). Thus we can only have $n_3 = 28$.

2. a. We know that $M/M^2 \triangleleft R/M^2$ and that $(R/M^2)/(M/M^2) \cong R/M$ is a field since M is maximal. Let $\theta: R/M^2 \to R/M$ denote the corresponding epimorphism. If e is an idempotent in R/M^2, then $e(1-e) = 0$ implies that $\theta(e)\theta(1-e) = 0$. But R/M has no zero divisors, so either $\theta(e) = 0$ or $\theta(1-e) = 0$. In the first case, we have $e \in \ker \theta = M/M^2$. But every element in M/M^2 has square 0, so $e = e^2 = 0$. On the other hand, if $\theta(1-e) = 0$ then, since $1 - e$ is also an idempotent, the above yields $1 - e = 0$ and hence $e = 1$.

b. Let $\sim: M \to M/M^2$ denote the natural R-module homomorphism. Since R is Noetherian, M is a finitely generated R-module, say $M = m_1 R + m_2 R + \cdots + m_k R$. Then $M/M^2 = M = \bar{m}_1 R + \bar{m}_2 R + \cdots + \bar{m}_k R$. But M acts trivially on the module M/M^2, so this yields $M/M^2 = M = \bar{m}_1(R/M) + \bar{m}_2(R/M) + \cdots + \bar{m}_k(R/M)$ and M/M^2 is a finite-dimensional vector space over the field R/M.

c. If $R = K[x_1, x_2, \ldots, x_t]$, then the Hilbert Nullstellensatz implies that the field R/M is a finite algebraic extension of K. In other words, $\dim_K R/M < \infty$. Furthermore, the Hilbert Basis Theorem implies that R is Noetherian so, by (b), we know that M/M^2 is a finite-dimensional R/M-vector space. Thus M/M^2 is also a finite-dimensional K-vector space. Since $\theta: R/M^2 \to R/M$ is a K-linear transformation with kernel M/M^2, we conclude that $\dim_K R/M^2 = \dim_K M/M^2 + \dim_K R/M < \infty$.

3. a. Say $\alpha^m \in F$ with $m > 0$ and write $m = qn + r$ where q and r are nonnegative integers with $r < n$. Then $\alpha^r = \alpha^m/(\alpha^n)^q \in F$, so the minimality of n implies that $r = 0$ and $n|m$.

b. Suppose $\text{char } F = p > 0$ and that $p|n$. Say $n = pt$. Then the minimality of n implies that $\beta = \alpha^t \in E \setminus F$ and $\beta^p = \alpha^n \in F$. Now β is a root of the polynomial $x^p - \beta^p \in F[x]$ and this polynomial is equal to $(x - \beta)^p \in E[x]$. Since $\beta \notin F$, the minimal polynomial of β over F must be a divisor of $x^p - \beta^p$ of degree larger than 1, and hence it has β as a multiple root. In particular, β is not separable over F, so E is not separable over F and this contradicts the assumptions.

c. Let $f(x) \in F[x]$ be the minimal monic polynomial of α over F and suppose that $\deg f(x) = r$. Since α satisfies $x^n - \alpha^n \in F[x]$, it follows that $f(x)$ divides $x^n - \alpha^n$, so $r \leq n$ and each root of $f(x)$ in the algebraic closure of E is of the form $\varepsilon \alpha$, where ε is an
nth root of unity. In particular, the product of the \(r \) roots of \(f(x) \) must be equal to \(\delta \alpha^r \), where \(\delta \) is also an \(n \)th root of unity. Note that this product is plus or minus the constant coefficient of the polynomial \(f(x) \in \mathbb{F}[x] \) and hence it is contained in \(F \). In other words, \(\delta \alpha^r \in F \subseteq E \). Since \(\delta \alpha^r \in E \) and \(0 \neq \alpha \in E \), we have \(\delta \in E \) and then, by assumption, \(\delta \in F \). With this, \(\delta \alpha^r \in F \) implies that \(\alpha^r \in F \), and the minimality of \(n \) yields \(r = n \). Since \(E = F[\alpha] \), we conclude that \(|E : F| = \deg f(x) = n \), as required.

4. a. Suppose \(A = \text{diag}(a_1, a_2, \ldots, a_n) \) and define the real diagonal matrices \(B = \text{diag}(b_1, b_2, \ldots, b_n) \) and \(C = \text{diag}(c_1, c_2, \ldots, c_n) \) as follows. If \(a_i > 0 \), set \(b_i = \sqrt{a_i} \) and \(c_i = 0 \), while if \(a_i \leq 0 \), set \(b_i = 0 \) and \(c_i = \sqrt{-a_i} \). Then for each \(i \), we have \(b_ic_i = 0 \) and \(a_i = b_i^2 - c_i^2 \), so \(BC = CB = 0 \) and \(A = B^2 - C^2 \).

b. Since \(A \) is a real symmetric matrix, we know that it has real eigenvalues and that it can be diagonalized by a real matrix. In other words, there exists a real invertible matrix \(P \) with \(P^{-1}AP \) a real diagonal matrix. By (a), we can write \(P^{-1}AP = U^2 - V^2 \) where \(U \) and \(V \) are real matrices satisfying \(UV = VU = 0 \). Set \(B = PUP^{-1} \) and \(C = PVP^{-1} \). Since conjugation is an algebra automorphism of the matrix ring, we then have \(A = B^2 - C^2 \) and \(BC = CB = 0 \).

c. Let \(v \neq 0 \) be a real eigenvector for \(B \) corresponding to the given real eigenvalue \(\lambda \neq 0 \). That is, \(Bv = \lambda v \) and \(v = \lambda^{-1}Bv \). Since \(CB = 0 \), we have \(Cv = C(\lambda^{-1}Bv) = \lambda^{-1}(CB)v = 0 \). In other words, \(v \) is also an eigenvector for \(C \), but with eigenvalue 0. Finally, \(Av = (B^2 - C^2)v = \lambda^2v - 0v = \lambda^2v \). Since \(v \neq 0 \), this says that \(\lambda^2 > 0 \) is an eigenvalue for \(A \) with \(v \) as a corresponding eigenvector.

5. a. \(DM(x^n) = D(x^{n+1}) = (n+1)x^n \) and \(MD(x^n) = M(nx^{n-1}) = nx^n \). Thus \((DM - MD)(x^n) = (n+1)x^n - nx^n = x^n = I(x^n) \). Since \(DM - MD \) and \(I \) agree on the basis \(\{1, x, x^2, \ldots\} \), they are identical.

b. Suppose the set \(\{M^iD^j\} \) is \(K \)-linearly dependent. Then there are field elements \(a_{i,j} \) so that \((*) \sum_{j=k}^{\ell} \sum_{i} a_{i,j} M^iD^j = 0 \) and \(a_{i,k} \neq 0 \) for some subscript \(i \). Note that \(D^k(x^k) = k! \) and hence \(D^j(x^k) = 0 \) for all \(j > k \). Thus, applying the expression \((*) \) to \(x^k \) yields \(0 = \sum_{i} a_{i,k} M^i(k!) = \sum_{i} k!a_{i,k}x^i \). But \(K \) has characteristic 0, so \(k! \) is not 0 in \(K \) and hence we must have \(a_{i,k} = 0 \) for all \(i \), a contradiction.

c. We proceed by induction on \(t \). If \(t = 0 \) then \(DM^t = D \) is certainly in the \(K \)-linear span of \(L \). Now suppose that the result holds for some \(t \geq 0 \). Then, by (a), \(DM^{t+1} = DM \cdot M^t = (I + MD) \cdot M^t = M^t + M \cdot DM^t \). It is clear that \(M^t \) is in the linear span of \(L \) and, by induction, so is \(DM^t \). Furthermore, from the nature of \(L \), it is clear that the span of \(L \) is closed under left multiplication by \(M \) and hence \(M \cdot DM^t \) is in this span. Consequently, so is \(DM^{t+1} = M^t + M \cdot DM^t \), and the induction step is proved.