Answers to the Algebra Qualifying Exam
January 2004

1. a. If \(H \) and \(K \) are subgroups of \(G \), then it is known that \(|H : H \cap K| \leq |G : K| \). Since we are given that \(|G : H| = n \), we have \(|H : H \cap H^g| \leq |G : H^g| = |G : H| = n \), where the first equality holds because \(|H| = |H^g| \).

b. We are given that \(H \) is abelian. Then \(H^g \) is also abelian, and so both \(H \) and \(H^g \) centralize \(H \cap H^g \). It follows that \(H \subseteq C \) and \(H^g \subseteq C \), where \(C = C_G(H \cap H^g) \) is the centralizer. Since \(H \) is maximal in \(G \), either \(C = G \) or \(C = H \). In the first case, \(H \cap H^g \subseteq Z(G) \), and in particular \(H \cap H^g \triangleleft G \). Otherwise, \(H^g \subseteq C = H \), and thus \(H^g = H \) and \(g \in N_G(H) \). In this case, \(H \cap H^g = H \) and we must show that \(H \triangleleft G \). But \(H < N_G(H) \) since \(g \in N_G(H) \) and we are given that \(g \notin H \). By the maximality of \(H \), therefore, \(N_G(H) = G \) and \(H \triangleleft G \), as wanted.

c. Here \(n \) is prime, and so \(H \) is maximal and we are given that \(H \) is abelian. By (b), we have \(H \cap H^g \triangleleft G \). Since \(G \) is simple and \(H \cap H^g \) is proper, we have \(H \cap H^g = 1 \). By (a), therefore, \(|H| = |H : 1| = |H : H \cap H^g| \leq n \), and so \(|G| = n|H| \leq n^2 \). Since \(G \) is simple and \(n \) is prime, we cannot have equality here and thus \(|G| < n^2 \) and \(|G| = nm \), where \(m < n \). But then a Sylow \(n \)-subgroup of \(G \) has order \(n \) and the number of these divides \(m \). Since \(m < n \), the number of Sylow \(n \)-subgroups must be 1. By simplicity, then, \(|G| = n \) and hence \(|H| = 1 \).

2. a. Since \(X^2, X^3 \in K[X] \) have their coefficient of the indeterminate \(X \) equal to 0, it follows that \(X^2, X^3 \in R \). To show \(X^3 \) is irreducible, observe that it is a nonzero nonunit and suppose \(X^3 = fg \), where \(f, g \in R \). In particular, \(f \) and \(g \) are polynomials and the factorization \(X^3 = f(X)g(X) \) holds in \(K[X] \). But \(K[X] \) is a UFD, and thus if neither \(f \) nor \(g \) is a constant polynomial, the only possibilities are \(f(X) = aX \) and \(g(X) = bX^2 \) or vice versa, where \(a \) and \(b \) are nonzero constants. But this is impossible since the polynomial \(aX \) does not lie in \(R \). Thus one of \(f \) or \(g \) is a constant, hence is a unit in \(R \), and this proves that \(X^3 \) is irreducible. The proof that \(X^2 \) is irreducible is similar.

In the ring \(R \), we see that \(X^3 \) divides \((X^2)(X^4) \), but it does not divide either \(X^2 \) or \(X^4 \). (That it does not divide \(X^2 \) is clear; it does not divide \(X^4 \) since \(X \notin R \).) Similarly, \(X^2 \) divides \((X^3)(X^3) \) in \(R \), but it does not divide \(X^3 \). This shows that neither \(X^2 \) nor \(X^3 \) is prime in \(R \).

b. We have \(R = K[X^2, X^3] \), and so \(R \) is a homomorphic image of the polynomial ring \(K[X, Y] \), which is noetherian by the Hilbert Basis theorem. Thus \(R \) is noetherian.

Let \(I \) be the ideal of \(R \) consisting of the polynomials in \(R \) having 0 constant term. Then \(X^2 \) and \(X^3 \) lie in \(I \). If \(I \) is principal, write \(I = (f) \). Note that \(f \) is not a unit in \(R \) since \(I < R \). Then \(f \) divides \(X^2 \) in \(I \) and since \(X^2 \) is irreducible, it follows that \(X^2 \) is a unit multiple of \(f \), and so \(f = aX^2 \) for some nonzero constant \(a \). Similarly, since \(X^3 \) is irreducible, we deduce that \(f = bX^3 \) for some nonzero constant \(b \). This is a contradiction since the polynomials \(aX^2 \) and \(bX^3 \) are different.

3. a. Let \(g(X) \in E[X] \). We want to show that \(g \) splits, and so it suffices to assume that \(g \) is irreducible over \(E \) and to show that \(g \) is linear. Adjoin a root \(\alpha \) of \(g \) to \(E \) to get a field \(K = E[\alpha] \). Now \(K \) is algebraic over \(E \), which is algebraic over \(F \), and so \(\alpha \) is algebraic over \(F \). Let \(f(X) \in F[X] \) be the minimal polynomial of \(\alpha \) over \(F \). By hypothesis, \(f \) splits over \(E \), and so all roots of \(f \) in any extension field of \(E \) actually lie in \(E \). In particular,
\(\alpha \in E \) and thus the irreducible polynomial \(g(X) \in E[X] \) has a root in \(E \). It follows that \(g \) is linear, as wanted.

b. By (a), it suffices to show that every polynomial \(f(X) \in F[X] \) splits over \(E \). Given \(f \), let \(L \) be a splitting field for \(f \) over \(F \). Then \(L \) has finite degree over \(F \), and since \(F \) has characteristic 0, the primitive element theorem tells us that there exists \(\beta \in L \) such that \(L = F[\beta] \). Now by hypothesis, the minimal polynomial of \(\beta \) over \(F \) has a root \(\gamma \in E \). Since \(\beta \) and \(\gamma \) have the same minimal polynomial over \(F \), we see that \(F[\beta] \) and \(F[\gamma] \) are \(F \)-isomorphic fields. But \(f \in F[X] \) splits over \(F[\beta] \), and thus \(f \) also splits over \(F[\gamma] \). But \(F[\gamma] \subseteq E \), and so \(f \) splits over \(E \), as wanted.

4. a. We can factor \(f(X) = g(X)h(X) \), where \(\deg(g) = m > 0 \). Since \(f \) is the minimal polynomial of \(T \) and \(h \) has smaller degree, we know that \(h(T) \) is not the 0 operator and we can choose \(v \in V \) such that \(h(T)(v) \neq 0 \), and we write \(w = h(T)(v) \). Now let \(W \) be the span of \(\{w, T(w), T^2(w), \ldots, T^{m-1}(w)\} \) and note that \(W \) is nonzero and \(\dim(W) \leq m \).

To prove that \(T(W) \subseteq W \), it suffices to show that \(T^m(w) \in W \). By the division algorithm for polynomials, we can write \(X^m = g(X)g(X) + r(X) \), where \(\deg(r) < \deg(g) = m \). Then \(T^m(w) = g(T)g(T)(w) + r(T)(w) \). But \(q(T)g(T)(w) = g(T)g(T)h(T)(v) = 0 \), where the second equality follows since \(g(T)h(T) = f(T) = 0 \). It follows that \(T^m(w) = r(T)(w) \). This vector lies in \(W \), however, since either \(r = 0 \) or \(\deg(r) < m \), and this completes the proof.

b. Now assume \(W \subseteq V \) is a nonzero subspace such that \(T(W) \subseteq W \) and \(\dim(W) = n \). Let \(g(X) \in F[X] \) be the minimal polynomial of the restriction of \(T \) to \(W \), so that \(0 < \deg(g) \leq n \), where the first inequality holds since \(W \) is nonzero. To show that \(g \) divides \(f \), write \(f(X) = q(X)g(X) + r(X) \), where \(\deg(r) < \deg(g) \). Since \(f(T) = 0 \) annihilates \(W \) and \(g(T) \) also annihilates \(W \), it follows that \(r(T) - f(T) - q(T)g(T) \) also annihilates \(W \). But \(r \) cannot be nonzero since otherwise its degree would be smaller than the degree of the minimal polynomial \(g \) of the restriction of \(T \) to \(W \). It follows that \(r = 0 \) and \(g \) divides \(f \), as wanted.

5. a. We have \(V = X \oplus Y \), where \(X \) and \(Y \) are nonzero modules. Suppose \(X \) and \(Y \) are simple and not isomorphic and let \(U \subseteq V \) be a submodule different from 0 and \(V \). We want to show that \(U \) must be \(X \) or \(Y \), so we suppose not. Then \(U \cap X = 0 \) since \(X \) is simple. Also \(U + X > X \). But \(V/X \cong Y \) is simple, and this shows that \(U + X = V \). Then \(V = X \oplus U \) and \(U \cong V/X \cong Y \). Similarly, \(U \cong X \), so \(X \cong Y \), a contradiction.

Conversely, now assume that there are no submodules other than the obvious four. Then \(X \) must be simple since if it had a nonzero proper submodule, that would be a fifth submodule of \(V \), which does not exist. Similarly \(Y \) is simple. If there is an isomorphism \(\theta : X \rightarrow Y \), let \(S = \{x + \theta(x) \mid x \in X\} \). It is trivial to check that \(S \) is a submodule different from the original four, and this contradiction shows that \(X \) and \(Y \) are not isomorphic.

b. If \(\alpha \in \text{End}(V) \), then \(\alpha(X) \cong X \) or \(\alpha(X) = 0 \) since \(X \) is simple, and thus \(\alpha(X) = X \) or \(\alpha(X) = 0 \subseteq X \) since \(X \) is the only submodule of \(V \) isomorphic to \(X \) by (a). In other words, for all \(\alpha \in \text{End}(V) \), we have \(\alpha(X) \subseteq X \) and similarly, \(\alpha(Y) \subseteq Y \). Writing \(\alpha_X \) and \(\alpha_Y \) to denote the restrictions of \(\alpha \) to \(X \) and \(Y \), we now have the ring homomorphism \(\theta : \alpha \mapsto (\alpha_X, \alpha_Y) \) from \(\text{End}(V) \) into the external direct sum \(\text{End}(X) \oplus \text{End}(Y) \). This map is injective since only \(0 \in \text{End}(V) \) annihilates both \(X \) and \(Y \) and it is surjective since given \(\beta \in \text{End}(X) \) and \(\gamma \in \text{End}(Y) \), we can define \(\alpha \) on \(V \) by \(\alpha(x + y) = \beta(x) + \gamma(y) \). (This is well defined because the sum \(V = X + Y \) is direct.) Finally, \(\text{End}(X) \) and \(\text{End}(Y) \) are division rings by Schur’s lemma since \(X \) and \(Y \) are simple.