1. A finite group is said to be \(\textit{perfect} \) if it has no nontrivial abelian homomorphic image.
 i. Show that a perfect group has no nontrivial solvable homomorphic image. (3 points)

2. Let \(R \) be a ring and let \(V \) be a right \(R \)-module. Assume that every simple submodule of \(V \) is a direct summand of \(V \).
 i. If \(W \) is any submodule of \(V \), show that any simple submodule of \(W \) is a direct summand of \(W \). (5 points)

3. Let \(\alpha \) be the real positive 16th root of 3 and consider the field \(F = \mathbb{Q}[\alpha] \) generated by \(\alpha \) over the rationals \(\mathbb{Q} \). Notice that we have the chain of intermediate fields

\[
\mathbb{Q} \subseteq \mathbb{Q}[\alpha^8] \subseteq \mathbb{Q}[\alpha^4] \subseteq \mathbb{Q}[\alpha^2] \subseteq \mathbb{Q}[\alpha] = F.
\]

 i. Compute the degrees of these five intermediate fields over \(\mathbb{Q} \) and conclude that these fields are all distinct. (4 points)

4. Let \(X \) be a subspace of \(M_n(\mathbb{C}) \), the \(\mathbb{C} \)-vector space of all \(n \times n \) complex matrices. Assume that every nonzero matrix in \(X \) is invertible. Prove that \(\dim_{\mathbb{C}} X \leq 1 \).

5. Let \(E \) be an algebraic extension of the rational numbers \(\mathbb{Q} \) and let \(\alpha \in E \).
 i. Prove that there exists a nonzero integer \(n \in \mathbb{Z} \) such that \(n\alpha \) is an algebraic integer. (4 points)

 ii. Show that \(\mathbb{Z}[\alpha] \) does not contain \(\mathbb{Q} \) and hence conclude that \(\mathbb{Z}[\alpha] \) is not a field. (6 points)