1. Fix a prime \(p \) and let \(G \) be a finite group with the property that every nonidentity \(p \)-subgroup of \(G \) is contained in a unique Sylow \(p \)-subgroup of \(G \). Suppose \(N \trianglelefteq G \) and \(|N| \) is divisible by \(p \).
 i. If \(P \) and \(Q \) are Sylow \(p \)-subgroups of \(G \), show that \(Q = P^n \) for some element \(n \in N \). (6 points)
 ii. Prove that \(G/N \) has a unique Sylow \(p \)-subgroup. (4 points)

2. Let \(R \) be a commutative domain and write \((a)\) for the principal ideal generated by \(a \in R \). Recall that an element of \(R \) is said to be irreducible if it is nonzero, not a unit, and has no proper factorization.
 i. Show that \((a) \subseteq (b)\) if and only if \(b \mid a \), and that \((a) = (b)\) if and only if \(b = au \) for some unit \(u \in R \). (2 points)
 ii. If \(R \) is a UFD (unique factorization domain), prove that the set of principal ideals of \(R \) satisfies the maximal condition. (4 points)
 iii. If the set of principal ideals of \(R \) satisfies the maximal condition, show that every nonzero, nonunit element of \(R \) can be written as a finite product of irreducible elements. (4 points)

3. Let \(p \) be a prime, let \(F \subseteq K \) be fields of characteristic 0, and assume that \(F \) contains a primitive \(p \)-th root of unity. Fix \(a \in K \).
 i. Prove that there exists a field \(E \supseteq K \) such that \(E \) contains a \(p \)-th root of \(a \) and \(|E : K| = 1 \) or \(p \). (4 points)
 ii. Now assume that \(K \) is a finite degree Galois extension of \(F \). Show that there exists a field \(E \supseteq K \) such that \(E \) contains a \(p \)-th root of \(a \), \(E \) is Galois over \(F \), and \(|E : K| \) is a power of \(p \). (6 points)

4. Let \(V \) be a finite dimensional vector space over a field of characteristic 0. Suppose \(T: V \to V \) is a linear operator such that the trace \(\text{tr} T^k = 0 \) for all integers \(k \geq 1 \).
 i. Show that the constant term of the characteristic polynomial of \(T \) is zero, and deduce that \(T(V) \neq V \). (5 points)
 ii. Let \(S \) denote the restriction of \(T \) to the subspace \(T(V) \), so that \(S \) is a linear operator on \(T(V) \). Prove that \(\text{tr} S^k = 0 \) for all integers \(k \geq 1 \). (4 points)
 iii. Show that \(T \) is nilpotent. (1 point)

5. Let \(G \) be a (not necessarily finite) group and let \(\theta: G \to G \) be a homomorphism such that \(\theta^n(G) = \{1\} \) for some integer \(n \geq 1 \).
 i. If the kernel of \(\theta \) is finite, prove that the kernel of \(\theta^2 \) is finite, and deduce that \(G \) is finite. (5 points)
 ii. If \(\theta(G) \) has finite index in \(G \), prove that \(\theta^2(G) \) has finite index in \(G \), and deduce that \(G \) is finite. (5 points)