1. (5 points) $y = x^2 + 3$ is a solution of the differential equation

(a) $y'' + 3y' = 0$
(b) $y'' + 3x = 0$
(c) $3y' - 6 = 0$
(d) $xy'' - y' = 0$

Answer: $y' = 2x$ and $y'' = 2$. So none of $y'' + 3y'$, $y'' + 3x$, $3y' - 6$ equal zero, but $xy'' - y' = 0$. So the correct answer is (d).

2. (5 points) A solution of the differential equation $y' = 3y$ is

(a) $y = t^3$
(b) $y = \ln 3t$
(c) $y = \cos 3t + \sin 3t$
(d) $y = e^{3t}$

Answer: $(t^3)' = 3t^2 \neq 3(t^3)$, $(\ln 3t)' = t^{-1} \neq 3(\ln 3t)$, $(\cos 3t + \sin 3t)' = -3 \sin 3t + 3 \cos 3t \neq 3(\cos 3t + \sin 3t)$, but $(e^{3t})' = 3e^{3t} = 3(e^{3t})$. So the correct answer is (d).
3 (5 points) The equation \(\frac{dy}{dx} + 2y = e^{-x} \) is most accurately described as a

(a) second degree first order differential equation
(b) first order homogeneous differential equation
(c) first order partial differential equation
(d) first order linear differential equation

Answer: (d). See page 864 of the book.

4 (15 points) Find the general solution of the differential equation in the previous problem.

Answer: As described on page 865 of the book, the general solution is

\[
y = e^{-\int 2dx} (\int e^{-x} e^{\int 2dx} dx + C) = e^{-2x} (\int e^{-x} e^{2x} dx + C) = e^{-2x} (e^{x} + C) = e^{-x} + Ce^{-2x}.
\]

Sun Mar 11 20:01:56 2001

There are 130 scores

<table>
<thead>
<tr>
<th>grade</th>
<th>range</th>
<th>count</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27...30</td>
<td>63</td>
<td>48.5%</td>
</tr>
<tr>
<td>AB</td>
<td>24...26</td>
<td>21</td>
<td>16.2%</td>
</tr>
<tr>
<td>B</td>
<td>21...23</td>
<td>16</td>
<td>12.3%</td>
</tr>
<tr>
<td>BC</td>
<td>18...20</td>
<td>13</td>
<td>10.0%</td>
</tr>
<tr>
<td>C</td>
<td>15...17</td>
<td>7</td>
<td>5.4%</td>
</tr>
<tr>
<td>D</td>
<td>12...14</td>
<td>2</td>
<td>1.5%</td>
</tr>
<tr>
<td>F</td>
<td>0...11</td>
<td>8</td>
<td>6.2%</td>
</tr>
</tbody>
</table>

Mean score = 24.7. Mean grade = 3.25.