1 Diffusions: An Informal Overview

In this lecture, we consider a different scaling limit of the Wright-Fisher model—this time going forward in time. This limit involves diffusion processes. Because of the technical difficulties arising in the theory of diffusions, we only give a rather informal discussion of this topic.

Informal Definition. Formally:

A real-valued, continuous-time stochastic process \(\{X(t) : t \in \mathbb{R}_+\} \) which satisfies the strong Markov property and possesses (almost surely) continuous sample paths is called a (one-dimensional) diffusion.

Instead of explaining what this means, we give a canonical example which should be familiar:

EX 23.1 (Brownian motion) A real-valued stochastic processes \(\{B_t : t \in \mathbb{R}_+\} \) is a Brownian motion if it has the following properties:

1. \(B_0(\omega) = 0, \forall \omega. \)
2. The map \(t \mapsto B_t(\omega) \) is a continuous function of \(t \) for all \(\omega. \)
3. For every \(t, h \geq 0, B_{t+h} - B_t \) is independent of \(\{B_u : 0 \leq u \leq t\} \) and has a Gaussian distribution with mean 0 and variance \(h. \)

Brownian motion arises naturally as the properly re-scaled limit of random walks. For our purposes, it will be enough to consider diffusions defined on a closed interval \(I = [l, r] \). Moreover, we only consider diffusions that satisfy the following properties:
Notes 23: Wright-Fisher diffusion

- For every $\varepsilon > 0$,
 \[
 \lim_{h \downarrow 0} \frac{1}{h} \mathbb{P}\left[|X(t + h) - x| > \varepsilon \mid X(t) = x\right] = 0, \tag{1}
 \]
 for all $x \in I$. (All diffusions satisfy this version of “continuity,” unlike jump chains for instance.)

- Let $\Delta_h X(t) = X(t + h) - X(t)$. For all $l < x < r$ and $t \in \mathbb{R}_+$,
 \[
 \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E}\left[\Delta_h X(t) \mid X(t) = x\right] = \mu(x), \tag{2}
 \]
 and
 \[
 \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E}\left[(\Delta_h X(t))^2 \mid X(t) = x\right] = \sigma^2(x), \tag{3}
 \]
 where μ, the infinitesimal drift (not to be confused with genetic drift), and σ^2, the infinitesimal variance, are continuous functions of x. In particular, the process is time-homogeneous. Moreover for $r = 3, 4, \ldots$
 \[
 \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E}\left[|\Delta_h X(t)|^r \mid X(t) = x\right] = 0. \tag{4}
 \]

- The process is regular, that is, for all x, y in the interior of I
 \[
 \mathbb{P}[T(y) < \infty \mid X(0) = x] > 0, \tag{5}
 \]
 where $T(y)$ is the hitting time of y, that is, the first time y is reached.

We illustrate the moment conditions in the case of Brownian motion.

EX 23.2 (Brownian motion: Infinitesimal moments) By the Gaussian increments, we have immediately
 \[
 \mathbb{E}\left[\Delta_h X(t) \mid X(t) = x\right] = 0,
 \]
 \[
 \mathbb{E}\left[(\Delta_h X(t))^2 \mid X(t) = x\right] = h,
 \]
 and
 \[
 \mathbb{E}\left[(\Delta_h X(t))^4 \mid X(t) = x\right] = 3h^2.
 \]

More generally, for Brownian motion with drift μ and variance σ^2, that is, $\mu t + \sigma B_t$, the first limit above is μ and the second, σ^2.

Convergence to diffusions. Let \(\{X_N^n\}_{n \geq 0} \) be a sequence of Markov chains over \(I \). Let \(\Delta X_N^n = X_N^{n+1} - X_N^n \). Assume the following conditions are satisfied:

\[
\mathbb{E}[\Delta X_N^n | X_N^n] = h_N \mu(X_N^n) + \varepsilon^N_{1,n}, \tag{6}
\]

\[
\mathbb{E}[(\Delta X_N^n)^2 | X_N^n] = h_N \sigma^2(X_N^n) + \varepsilon^N_{2,n}, \tag{7}
\]

and

\[
\mathbb{E}[(\Delta X_N^n)^4 | X_N^n] = \varepsilon^N_{4,n}, \tag{8}
\]

where \(h_N \downarrow 0 \) and for all \(t > 0 \) and \(i = 1, 2, 4 \)

\[
\sum_{n < \lceil t/h_N \rceil} \mathbb{E} |\varepsilon^N_{i,n}| \to 0, \tag{9}
\]

where \(\lfloor z \rfloor \) is the integer part of \(z \). Then, under further technical conditions (\(\mu \) and \(\sigma^2 \) must correspond to a well-defined diffusion; see e.g. [Dur96, (2.2) or (3.3) in Chapter 5]), the finite-dimensional distributions of the process

\[
X^N(t) = X^N_{\lfloor t/h_N \rfloor}
\]

converge to the finite-dimensional ditributions of a diffusion \(\{X(t)\}_{t \in \mathbb{R}_+} \) with infinitesimal drift \(\mu \) and variance \(\sigma^2 \).

(For more general tightness and truncated moment conditions, see [Dur96, (7.1) or (8.2) in Chapter 8]. Moreover, the discrete-time process need not be Markov.)

2 Wright-Fisher diffusion

Consider a haploid population with \(N \) individuals and two alleles \(A \) and \(a \). Denote by \(i \) the number of \(A \)-types. Assume that a \(A \to a \) (respectively \(a \to A \)) mutation occurs immediately after birth with probability \(\alpha \) (respectively \(\beta \)). Further suppose that \(A \) is positively selected so that the relative survival abilities of \(A \) and \(a \) in contributing to the next generation are in the ratio \(1+s \) to 1 where \(s > 0 \). (One way to think about this is to assume that all \(A \)-types survive to maturity, but only a fraction \(\frac{1}{1+s} \) of \(a \)-types survive.) We still assume that the next generation has \(N \) individuals following a binomial sampling scheme where the probability of being \(A \) is

\[
p_i = \frac{[i(1-\alpha) + (N-i)\beta]}{[i(1-\alpha) + (N-i)\beta] + \frac{1}{1+s}[i\alpha + (N-i)(1-\beta)]}. \tag{10}
\]
Assume α, β and s scale with N as

$$\alpha = \frac{\gamma_1}{N}, \quad \beta = \frac{\gamma_2}{N}, \quad s = \frac{\phi}{N}.$$

Let Z^N_n be the number of A-types in generation n (at birth). We are claiming that, in the limit $N \to \infty$, the process

$$\frac{Z^N_{[Nt]}}{N},$$

behaves like a diffusion. We apply the conditions above to $X^N_n = \frac{Z^N_n}{N}$.

Mutation only. Assume that $\gamma_1, \gamma_2 > 0$ and $s = 0$. We compute the limiting infinitesimal drift and variance. By (10),

\[
\mathbb{E} \left[\Delta X^N_n \mid X^N_n = \frac{i}{N} \right] = p_i - \frac{i}{N}
\]

\[
= \frac{i(1 - \alpha) + (N - i)\beta}{N} - \frac{i}{N}
\]

\[
= -\alpha \frac{i}{N} + \beta \left(1 - \frac{i}{N}\right)
\]

\[
= \frac{1}{N} \left[-\gamma_1 \frac{i}{N} + \gamma_2 \left(1 - \frac{i}{N}\right) \right],
\]

so that

$$\mu(x) = -\gamma_1 x + \gamma_2 (1 - x).$$

Similarly,

\[
\mathbb{E} \left[(\Delta X^N_n)^2 \mid X^N_n = \frac{i}{N} \right] = \frac{i^2}{N^2} - 2 \frac{i}{N} p_i + \frac{Np_i(1 - p_i) + N^2 p^2_i}{N^2}
\]

\[
= \frac{1}{N} \left\{ p_i(1 - p_i) + \left(p_i - \frac{i}{N}\right)^2 \right\}
\]

\[
= \frac{1}{N} \left\{ i \frac{1 - i}{N} + O \left(\frac{1}{N}\right) \right\},
\]

so that

$$\sigma^2(x) = x(1 - x).$$

See [KT81] for a computation of the fourth moment.
Selection only. Assume $\phi > 0$ and $\alpha = \beta = 0$. As above

$$
\mathbb{E} \left[\Delta X_n^N | X_n^N = \frac{i}{N} \right] = p_i - \frac{i}{N}
$$

$$
= \frac{(1 + s)i}{(1 + s)i + (N - i)} - \frac{i}{N}
$$

$$
= \frac{1}{N} \left\{ N \frac{(1 + s)i}{N + si} - i \right\}
$$

$$
= \frac{1}{N} \left\{ N \frac{i - i^2}{N + si} \right\}
$$

$$
= \frac{1}{N} \left\{ \phi \frac{i}{N} - \frac{i^2}{N^2} \right\}
$$

$$
= \frac{1}{N} \left\{ \phi \frac{i}{N} \left(1 - \frac{i}{N} \right) + O \left(\frac{1}{N} \right) \right\}
$$

so that

$$
\mu(x) = \phi x (1 - x).
$$

The second moment calculation is essentially identical to the mutation only case.

Further reading

The material in this section was taken from Chapter 15 of [KT81].

References

