Complexity of binary trees of uncountable height

Reese Johnston, University of Wisconsin-Madison

http://www.math.wisc.edu/~rwjohnston

December 6, 2014
Definitions

- Given a language \mathcal{L} containing the symbol \in, an \mathcal{L}-formula φ is Δ^0_0 if all quantifiers appearing in φ are bounded (i.e., of the form $\forall x \in y$ or $\exists x \in y$).
- φ is Σ^0_1 if it is of the form $\exists x \psi$, where ψ is Δ^0_0.
- We operate within the universe L_{ω_1}. A set $X \subseteq L_{\omega_1}$ is c.e. if X is definable by a $\Sigma^0_1(L_{\omega_1})$ formula (a Σ^0_1 formula with parameters in L_{ω_1}). X is computable if both X and \overline{X} are c.e.
For the most part, we will rely on an uncountable version of the Church-Turing Thesis; we think of this as running a program that is allowed to manipulate countably infinite objects and run for any countable number of stages.
Facts

- There is a computable bijection between ω_1 and the universe; this induces a computable well-order on the universe. Denote this \prec_{ω_1}.
- For any degree $d \geq 0'$, there is a degree a such that $a' = d$.
- For any degree $d \geq 0^{(n)}$, there is a degree a such that $a^{(n)} = d$.

These, and many more, can be proven by the direct analogue of the proofs in ω.
Trees

A binary tree is a subset of $2^{<\omega_1}$ (in the ω-setting, $2^{<\omega}$) that is closed downward. A path is a string of length ω_1 (in the ω-setting, ω) every initial segment of which is on the tree.

In ω

In the ω setting, we have the Low Basis Theorem, which states that every computable tree has a low path, among numerous other results about the behaviour of Π^0_1 classes.

In ω_1

Very little is known about Π^0_1 classes. Does the Low Basis Theorem still hold?
No. It is an easy observation that binary trees of uncountable height and ω_1-branching trees are interchangeable, and by a result of Fokina, Friedman, Knight and Miller the problem of detecting paths through ω_1-branching trees is Σ^1_1-complete.

The problem seems to be that in a binary tree of height ω_1, Weak König’s Lemma fails; because of the opportunity for uncountable width, a node can have extensions at every height but not extend to a path.

Does the Low Basis Theorem hold for trees of countable width?
Theorem (J.)
There is a computable tree T of countable width which has a unique path, and such that this path is Turing equivalent to \emptyset'.

Lemma
There is a computable Aronszajn tree; i.e., a tree of countable width and uncountable height, having no path.
Proof of Thm

We construct the tree, T, in stages, as $T = \bigcup_s T_s$, such that $T_s \setminus T_t \subseteq 2^s \setminus 2^t$. At each stage, we will have P_s, our “intended path”; the (usually false) assumption is that the path P through the tree will begin with P_s. We will also have a collection $Q_s \subset T_s$; these will be identified as “roots of Aronszajn trees”, and will always have successor length. Fix a computable Aronszajn tree A. We have a sequence of strategies R_α; the goal of R_α will be to “code” the α bit of \emptyset' into P in some recoverable sense.

At any stage, some of the R_α have been initialized and some have not. An uninitialized requirement cannot require attention. An initialized requirement has associated with it an ordinal β_α and a member σ_α of Q_s. We call β_α the branchpoint of R_α. If R_α has been initialized and $\emptyset'_s(\alpha) \neq P_s(\beta_\alpha)$, then R_α requires attention.

At a successor stage $s + 1$, there are two cases.
Proof, continued

Case One: Some R_α requires attention. Let $\tau \in T_s \cap 2^s <_L$-least such that $\tau \ni \sigma_\alpha$; let $P_{s+1} = \tau$, and let $Q_{s+1} = (Q_s \setminus \{\sigma_\alpha\}) \cup \{P_s\}$. Deinitialize R_β for all $\beta > \alpha$. Let $T_s^* = T_s$.

Case Two: No R_α requires attention. In this case, fix α least such that R_α is uninitialized, and initialize it. Set $\beta_\alpha = |P_s| + 1$, $\sigma_\alpha = P_s1$. Let $P_{s+1} = P_s0$, and let $Q_{s+1} = Q_s \cup \{P_s1\}$. Let $T_s^* = T_s \cup \{P_s0, P_s1\}$.

Regardless of which case occurs, we then proceed to the expansion phase.

Expansion Phase: For each $\sigma \in Q_s$, add to T_s^* a collection of extensions of σ so that the collection of extensions of σ is naturally isomorphic to an initial segment of A.
Proof, continued

Finally, we consider the limit stages: At a limit stage, we ignore all requirements, and instead simply expand. Let $P_s = \lim_{t \to s} P_t$ (by the claim below, this limit exists). Let $Q_s = \limsup_{t<s} Q_t$. For each $\sigma \in Q_s$, again extend to maintain the isomorphism with A.

This completes the construction.
Claim

Let s a limit, and let $\alpha < s$. There exists a stage $t < s$ such that for all $u, v > t$, $P_u(\alpha) = P_v(\alpha)$. As a consequence (taking $s = \omega_1$) $P = \lim P_s$ is a Δ^0_2 path through T.

The only way for $P(\alpha)$ to fail to stabilize is if, by stage s, there are infinitely many stages u at which some strategy R_γ with $\beta_\gamma < \alpha$ receives attention. In particular, there is a sequence $\{\gamma_n\}_{n \in \omega}$ such that $\beta_{\gamma_n} < \alpha$ and $R_{\gamma_{n+1}}$ receives attention at some stage after R_{γ_n} does and before stage s, for all n. Note that these must receive attention after stage α, otherwise $P(\alpha)$ would not yet have been defined. However, when R_γ receives attention, it forces all lower-priority strategies to reinitialize and select a new branchpoint larger than the current stage - so it must be that $\{\gamma_n\}_{n \in \omega}$ is a descending sequence. Since this is a sequence of ordinals, it must stabilize. But no strategy can receive attention more than once; this is a contradiction, so no such sequence exists.
Claim

P is the unique path in T.

Let $\sigma \in T$ not on P. Note that a string is extended at stage s only if it is in one of the Aronszajn trees at stage s or else is on P_s; so σ extends to a path in T only if it uncountably often meets one of these conditions. If $\sigma \preceq P_s$ uncountably often, then by the fact that P stabilizes $\sigma \preceq P$, contradicting our hypothesis. But then σ is in an Aronszajn tree uncountably often. But by construction, it is always the same Aronszajn tree (if the tree around σ ceases to be Aronszajn, no prefix of σ will be chosen to be a root of a new Aronszajn tree). So clearly there is no path through σ.
Claim

P computes \emptyset'.

The bits of \emptyset' are encoded in the branchpoints of the strategies, so it suffices to recover these branchpoints. By induction, P can do so.
Thanks!