Faber expansions and sampling in mixed order Sobolev spaces

Glenn Byrenheid

October 14, 2014

We consider the mixed order Sobolev space
\[S_{r}^{p}W(T^{d}) := \left\{ f \in L_{p}(T^{d}) : \left\| \left(\sum_{j \in \mathbb{N}^{d}_{0}} 2^{2r|j|+1} |\delta_{j}[f](\cdot)|^{2} \right)^{1/2} \right\|_{p} < \infty \right\}, \]
where \(1 < p < \infty \) and \(\frac{1}{p} < r < \infty \). Here \(\delta_{j}[f] \) is that part of the Fourier series of \(f \) with frequencies in a dyadic anisotropic rectangle. We study a replacement of \(\delta_{j}[f] \) by building blocks that use only discrete information of \(f \) (function evaluations). Such a replacement (in the sense of equivalent norms) can be achieved with the help of tensorized Faber basis where a continuous function \(f \) is decomposed into tensor products of dilated and translated hat functions. Here we need the condition \(r > \frac{1}{p} \). The obtained discrete characterization is well suited for studying sampling issues in \(S_{r}^{p}W(T^{d}) \). We construct a sampling algorithm taking values on a sparse grid that allows for proving asymptotically optimal error bounds for the linear sampling numbers
\[g_{n}(S_{r}^{p}W(T^{d}), Y) = \inf_{\{\xi_{i}\}_{i=1}^{n} \subset T^{d}} \sup_{\{\psi_{i}\}_{i=1}^{n} \subset Y} \| f(\cdot) - \sum_{i=1}^{n} f(\xi_{i}) \psi_{i}(\cdot) \|_{Y}, \]
where the error is measured in a Lebesgue space \(L_{q}(T^{d}) \), \(1 < q \leq \infty \) as well as in isotropic Sobolev spaces \(W_{q}^{s}(T^{d}) \), \(s > r \), \(1 < p \leq q < \infty \). The talk is based on a joint work with Tino Ullrich.