Let V be a vector space of dimension n over a field \mathbb{F}, and let $T : V \to V$ be a linear transformation.

Definition 1. The space of alternating n-forms on V, denoted $\Lambda(V)$, is the (one-dimensional) vector space $\Lambda(V)$ of all $f : V \times \ldots \times V \to \mathbb{F}$ such that f is linear in each variable and
\[
f(..., v_i, v_{i+1}, ...) = -f(..., v_{i+1}, v_i, ...) \quad \text{for every } 1 \leq i \leq n - 1.
\]

Definition 2. We define the determinant of T, to be the scalar $\det(T) \in \mathbb{F}$ such that
\[
f(Tv_1, Tv_2, ..., Tv_n) = \det(T) \cdot f(v_1, v_2, ..., v_n),
\]

for every $f \in \Lambda(V)$, and $v_1, ..., v_n$.

Definition 3. For $\lambda \in \mathbb{F}$, the subspace
\[
V_\lambda = \{ v \in V ; T(v) = \lambda v \},
\]

is called the eigenspace of T associated with λ.

IMPORTANT REMARK In the quiz you will need to repeat exactly what is written here in complete way.

HW8. There will be a random question on HW8.

Good Luck!