1. Vector Spaces

Show that the following sets are vector spaces over the following fields.

(a) Show that the set of complex numbers, \mathbb{C}, is a vector space over the field of real numbers \mathbb{R} where addition is simply addition of complex numbers and scalar multiplication is:

$$\alpha \cdot (a + bi) = (\alpha \cdot a + \alpha \cdot bi)$$

for $\alpha, a, b \in \mathbb{R}$.

(b) Let $V = \{f : \mathbb{R} \to \mathbb{R}\}$ be the set of all functions from the real numbers to the real numbers. Show that V is a vector space over \mathbb{R} where addition and multiplication are defined below:

$$(f + g)(x) = f(x) + g(x),$$

$$(\alpha \cdot f)(x) = \alpha \cdot f(x),$$

for all $f, g \in V, x, \alpha \in \mathbb{R}$.

(c) Let $V = \{f : \mathbb{F}_p \to \mathbb{C}\}$ be the set of all functions from the finite field with p elements to the complex numbers. Show that V is a vector space over \mathbb{C}, where addition and multiplication are defined below:

$$(f + g)(x) = f(x) + g(x),$$

$$(\alpha \cdot f)(x) = \alpha \cdot f(x),$$

for all $f, g \in V, \alpha \in \mathbb{C}$, and $x \in \mathbb{F}_p$.

2. Subspaces

Let V be a vector space over F. Let $W \subset V$ be a subset of the vectors in V. We call W a subspace of V, if W is also a vector space using the SAME addition and multiplication rules given in V, and $0 \in W$. (Here 0 is the zero vector of V).

Fact: If $W \subset V$, in order to prove that W is a subspace of V, one must only show the following three things:
(a) For all \(u, v \in W, u + v \in W \). (Closure of Addition)
(b) For all \(u \in W \) and \(\alpha \in F, \alpha \cdot u \in W \). (Closure of Scalar Multiplication)
(c) \((0) \in W \). (Where 0 is the zero vector of \(V \)).

We will now prove several facts about subspaces.

(a) Let \(U, W \) be subspaces of a vector space \(V \) over a field \(F \). The intersection of \(U \) and \(W \) is defined as \(U \cap W = \{ v \in V \mid v \in U, v \in W \} \). Prove that \(U \cap W \) is a subspace of \(V \).

(b) Let \(V \) be a vector space over a field \(F \). Let \(S \subset V \) be a subset (not necessarily subspace) of \(V \). The span of \(S \) is defined as:

\[
\text{Span}(S) = \{ \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n \mid \alpha_j \in F, v_i \in S, \text{ for every } j \}.
\]

We will show in class that the span of a set is a subspace. Now let \(V = \mathbb{R}^3 \). Let \(U = \{(x_1, x_2, x_3) \in V \mid x_1 + x_2 + x_3 = 0\} \), \(W = \{(x_1, x_2, x_3) \in V \mid x_2 = 0\} \), and \(v = (1, 0, -1) \in V \). Show that:

\[U \cap W = \text{Span}\{v\} \]

(c) For the following vector spaces \(V \) and subsets \(W \subset V \) determine whether or not \(W \) is a subspace of \(V \). (Simply answer "yes" or "no", no proof is needed)

1. \(V = \mathbb{R}^3 \). \(W = \{(x_1, x_2, x_3) \in V \mid x_3 = 0\} \)
2. \(V = \mathbb{R}^3 \). \(W = \{(x_1, x_2, x_3) \in V \mid x_1, x_2, x_3 \in \mathbb{Z}\} \) (Here, \(\mathbb{Z} \) denotes the set of integers)
3. \(V = \{f : \mathbb{R} \rightarrow \mathbb{R}\}. \ W = \{f \in V \mid f(0) = 0\} \)
4. \(V = \{f : \mathbb{R} \rightarrow \mathbb{R}\}. \ W = \{f \in V \mid f(0) = 1\} \)
5. Let \(F \) be a field. Let \(V = M_2(F) \) be the vector space of two-by-two matrices with entries in \(F \). Let

\[W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(F) \mid a + d = 0 \right\}. \]

Remarks

- You are very much encouraged to work with other students. However, submit your work alone.
- The TA and the Lecturer will be happy to help you with the homework. Please visit the office hours.

Good Luck!