Math 341 - Fall 2014
Preparation for Final Test

Remarks

- Answer All the questions below.
- A definition is just a definition – there is no need to justify it. Just write it down.
- Unless it’s a definition, answers should be written in the following format:
 - Write the main points that will appear in your explanation or proof or computation. Main points:........
 - Write the actual explanation or proof or computation. Proof:........ or Computation:........

1. Matrix Presentation of Linear Transformation.

(a) (8) Let V and W be vector spaces of dimension n and m, respectively, over a field F. For a linear transformation $T : V \rightarrow W$ and ordered bases $B = \{v_1, \ldots, v_n\}$ for V, and $C = \{w_1, \ldots, w_m\}$ define the matrix $[T]_{C,B}$ representing T with respect to B and C, and write a formula for it.

(b) (15) Use the definition above to show that for B and C basis for V, and $T : V \rightarrow V$, we have the relation

$$[T]_C = M_{C,B} \cdot [T]_B \cdot M_{B,C},$$

where $[T]_B$ is the notation for $[T]_{B,B}$ (Hint: It is enough to show that the left and right hand sides agree on a general vector of the form $[v]_C \in F^n$. You can use the fact that the change of basis matrix $M_{B,C} \in M_n(F)$ is defined by the property $M_{B,C} \cdot [v]_C = [v]_B$, for every $v \in V$).

(c) (10) Let V be a vector of dim(V) = 5. Let $B = \{v_1, \ldots, v_5\}$ be a basis for V. Consider the linear transformation $T : V \rightarrow V$, given by

$$Tv_1 = 0,\;Tv_2 = v_1,\;\ldots,\;Tv_5 = v_4.$$

Compute the matrix $A = [T]_B$, and show that $A^5 = 0$ without using matrix multiplication (Hint: recall the multiplicativity property of the map $[\cdot]_B : L(V) \rightarrow M_5(F)$).

2. Invertibility.

(a) (8) Define when a linear transformation $T : V \rightarrow W$ is invertible. Define when a matrix $A \in M_n(F)$ is invertible.

(b) (15) Let V be a vector space of dimension n over a field F. Let B be a basis for V. Show that a linear transformation $T : V \rightarrow V$ is invertible if and only if the matrix $[T]_B$ is invertible.
(c) (10) Let
\[A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R}). \]

Show that \(A \) is invertible and compute its inverse. Deduce that the linear transformation \(T_A : \mathbb{R}^3 \to \mathbb{R}^3, v \mapsto A \cdot v \), is invertible. What is its inverse?

3. **Determinant.**

 (a) (8) Formulate the multiplicativity property of the determinant of a linear transformation.

 (b) (15) Show that if \(T : V \to V \) is invertible linear transformation then \(\det(T^{-1}) = \det(T)^{-1} \).

 (c) (10) Compute the determinant of the linear transformation \(T : \mathbb{R}^n \to \mathbb{R}^n \) given by \(Te_1 = e_n, Te_2 = e_{n-1}, \ldots, Te_n = e_1 \), where \(\mathcal{B}_{st} = \{ e_j ; 1 \leq j \leq n \} \) is the standard basis of \(\mathbb{R}^n \) (Hint: \(1 + \ldots + n = \frac{n(n+1)}{2} \)).

4. **Diagonalization.**

 (a) (8) For a linear transformation \(T : V \to V \), where \(\dim(V) = n \), define the notions of eigenvalue, eigenvector, and what does it mean that \(T \) is diagonalizable.

 (b) (15) Prove that if the above \(T \) has \(n \) distinct eigenvalues then it is diagonalizable (Hint: You may use the fact that eigenvectors with different eigenvalues are linearly independent).

 (c) (8) Let
\[A = \begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}. \]

What is \(A^{2014} =? \).

Good Luck!!