In each problem, unless otherwise specified, X is a nonempty set equipped with a metric d.

1. Carefully prove the following, which was stated in class: If $E \subseteq X$, $x \in \overline{E}$ if and only if for every $r > 0$, $N_r(x) \cap E \neq \emptyset$.

2. Show that if $\alpha > 0$,
 \[
 \tilde{d}(x, y) = \frac{d(x,y)}{\alpha + d(x,y)}
 \]
 also defines a metric on X. Show that X is a bounded set with respect to \tilde{d}.

3. Let (X, d_X) and (Y, d_Y) be metric spaces. Let $Z = X \times Y$. Show that the following define metrics on Z:
 \[
 d_1[(x_1, y_1), (x_2, y_2)] = d_X(x_1, x_2) + d_Y(y_1, y_2)
 \]
 \[
 d_\infty[(x_1, y_1), (x_2, y_2)] = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.
 \]

4. (Variant of Problem 9 in Rudin.) If $E \subseteq X$, we define the interior of E, denoted \hat{E}, to be the set of interior points of E. Then (by the definition of openness), E is open if and only if $E = \hat{E}$.
 a. Prove that $(\hat{E})^c = (E^c)$.
 b. Prove that \hat{E} is always an open set.
 c. Prove that \hat{E} equals the union of open sets contained in E.

5. If $E \subseteq X$, we define the boundary of E, denoted ∂E, to be the set of points $x \in X$ such that every neighborhood of x contains at least one point in E and at least one point in E^c.
 a. Show that: $\hat{E} = E \setminus \partial E$, $\overline{E} = E \cup \partial E$.
 b. Show that $\partial E = \overline{E} \cap E^c = (\hat{E} \cup (E^c)\hat{o})^c$. Use this to show that ∂E is closed.

6. Consider \mathbb{R} with the usual metric. Carefully show that $\overline{\mathbb{Q}} = \mathbb{R}$, $\hat{\mathbb{Q}} = \emptyset$, and $\partial \mathbb{Q} = \mathbb{R}$. (Note: You will need to show that every neighborhood of any rational number contains an irrational number.) Thus a set and its interior may have different closures, a set and its closure may have different interiors, and a set and its boundary may have different boundaries.

7. Let $E, F \subseteq X$. Prove the following.
 a. $(E \cap F)^\hat{o} = \hat{E} \cap \hat{F}$.
 b. $(E \cup F)^\hat{o} \supseteq \hat{E} \cup \hat{F}$.
 c. $(E \cap F) \subseteq \overline{E} \cap \overline{F}$.
 d. $(E \cup F) = \overline{E} \cup \overline{F}$.
Honors problems

1. If \(x \in X \) and \(E \subseteq X \), define \(d(x, E) = \inf_{y \in E} d(x, y) \). If \(r > 0 \), let
 \[
 N_r(E) = \{ x \in E : d(x, E) < r \}.
 \]
 a. Show that \(N_r(E) \) is open and that \(\overline{E} = \bigcap_{r > 0} N_r(E) \).
 b. Let \(x, y \in X \) and \(E \subseteq X \). Show that \(d(x, E) \leq d(x, y) + d(y, E) \).

2. If \(A, B \subseteq X \), define
 \[
 D(A, B) = \sup\{ d(a, B) : a \in A \} + \sup\{ d(b, A) : b \in B \}.
 \]
 Let \(\mathcal{F} \) be the collection of closed and bounded subsets of \(X \). Show that \(D \) maps \(\mathcal{F} \times \mathcal{F} \) into \(\mathbb{R} \), that is, that \(D(A, B) < \infty \) whenever \(A \) and \(B \) are closed and bounded. Which of the metric space axioms does \((\mathcal{F}, D) \) satisfy for general \(X \)? In each case, prove or give a counter-example.