In each problem, unless otherwise specified, subsets of \(\mathbb{R}^k \) are equipped with the Euclidean metric, and \(X \) is a nonempty set equipped with a metric \(d \).

1. Which of the following are compact? connected? Briefly justify your answers.
 a) \(\{ x \in \mathbb{R}^n : 1 \leq |x| \leq 2 \} \).
 b) \(\mathbb{N} \)
 c) \(\mathbb{Q} \cap [0, 1] \)

2. a) Let \(E \subseteq X \). Prove that \(E \) is not connected if and only if we can write \(E \subseteq A \cup B \) where \(A \cap E \neq \emptyset \), \(B \cap E \neq \emptyset \), \(A \cap B = \emptyset \), and \(A \) and \(B \) are both open.
 b) Use this to show that the metric space \(X \) is connected if and only if the only subsets of \(X \) that are both open and closed are \(X \) and \(\emptyset \).
 (Note, you may assume part a in proving b even if you do not know how to prove a.)

3. Show that the following sets are not compact by exhibiting an open cover with no finite subcover.
 a. \(E = \{ \frac{1}{n} : n \in \mathbb{N} \} \)
 b. \(E = \mathbb{Q} \cap [0, 1] \)
 c. Any infinite set equipped with the discrete metric.

4. Show that if the subset \(E \subseteq X \) is connected and contains more than 1 point, then \(E \) contains no isolated points. (Hence a connected set must contain one, zero, or infinitely many points.)

5. Prove the following.
 a. \(\lim_{n \to \infty} \left[\sqrt{n^2 + 1} - n \right] = 0 \).
 b. \(\lim_{n \to \infty} \left[\sqrt{n^2 + n - n} \right] = \frac{1}{2} \).

6. Prove that finite unions and arbitrary intersections are compact. In other words,
 a) Let \(F_1, \ldots, F_N \) be compact subsets of \(X \). Show that \(\bigcup_{n=1}^N F_n \) is compact.
 b) Let \(\{ F_\alpha \}_{\alpha \in A} \) be a collection of compact sets (for some index set \(A \)). Show that \(\bigcap_{\alpha \in A} F_\alpha \) is compact.
Honors problems

1. Show that a connected set containing at least two points must be uncountable.

2. Problems 23 and 24 of Chapter 2 in Rudin. (*Separable* is defined in problem 22.)