Fix field \(F \)

Given \(F \)-vector spaces \(V, W \) over \(F \)

Given

\[
\text{basis } \{e_i\}_{i=1}^m \text{ for } V
\]

\[
\text{basis } \{f_i\}_{i=1}^n \text{ for } W
\]

For \(\psi \in \text{Hom}_F(V, W) \), consider

matrix \(A \) rep \(\psi \) wrt \(X \) and \(Y \)

\[
\psi(v) = \sum_{i=1}^m A_{ij} v_i
\]

So

\(A \in \text{Mat}_{m \times n}(F) \).

The map

\[
\text{Hom}_F(V, W) \rightarrow \text{Mat}_{m \times n}(F)
\]

\(\psi \rightarrow \text{matrix rep } \psi \) wrt \(X \) and \(Y \)

is isom of vector spaces.
Cor 3. Given finite dim'd vector spaces V, W over F, then the dimension of $\text{Hom}_F(V, W)$ is $\dim(V) \times \dim(W)$.

pf. By Prop 2. \qed
Given three finite-dim'l vector spaces over F:

U, V, W.

Given

- basis $\{ x_1, x_2, \ldots \}$ for U
- basis $\{ v_1, v_2, \ldots \}$ for V
- basis $\{ w_1, w_2, \ldots \}$ for W

Given linear transformations:

$U \rightarrow V \rightarrow W$

ϕ ϕ

Consider

- matrix rep ϕ rel ϕ is \star, \star \star
- matrix rep $\phi \circ \phi$ rel $\phi \circ \phi$ is \star, \star \star \star

- matrix rep $\phi \circ \phi \circ \phi$ rel $\phi \circ \phi \circ \phi$ is \star, \star \star \star

$A = \star$, \star, \star \star

$B = \star$, \star \star \star

$C = \star$, \star \star \star

How are A, B, and C related?
For \(1 \leq j \leq r \)

\[
(\phi \circ \psi)(w) = \sum_{i=1}^{t} C_{ij} w_i
\]

Also

\[
(\phi \circ \psi)(u_x) = \phi(\psi(u_x))
\]

\[
= \phi\left(\sum_{l=1}^{a} A_{lx} \psi(v_l) \right)
\]

\[
= \sum_{l=1}^{a} A_{lx} \phi(v_l)
\]

\[
= \sum_{l=1}^{a} A_{lx} \left(\sum_{i=1}^{t} B_{il} \psi(w_i) \right)
\]

\[
= \sum_{i=1}^{t} \left(\sum_{l=1}^{a} B_{il} A_{lx} \right) w_i
\]

Find is 1st component \(w_i \) - coefs to get

\[
C_{ij} = \sum_{l=1}^{a} B_{il} A_{lx}
\]

In other words

\[
C = \beta A
\]

\[\text{matrix product}\]
Cor 4. The matrix product is associative.

pf Given matrices A, B, C

show

$$(AB)C = A(BC)$$

[assume the dimensions are such that above products make sense]

View A, B, C as representing some linear maps φ, ϕ, ψ w.r.t. some given bases.

AB represents $\varphi \circ \phi$

$$(AB)C$$ represents $$(\varphi \circ \phi) \circ \psi$$

BC represents $\phi \circ \psi$

$A(BC)$ represents $\varphi (\phi \circ \psi)$

But

$$(\varphi \circ \phi) \circ \psi = \varphi (\phi \circ \psi)$$

so * holds.
For $n \geq 1$ define

$$\text{Mat}_n(F) = \text{Mat}_{n \times n}(F)$$

Matrix multiplication turns $\text{Mat}_n(F)$ into a ring with identity

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The map

$$F \to \text{Mat}_n(F)$$

$$\gamma : \quad a \to aI$$

turns $\text{Mat}_n(F)$ into an F-algebra.

Given vector space V over F with $\dim(V) = n$.

Recall F-only

$$\text{End}_F(V) = \text{Hom}_F(V,V)$$

Fix a basis $\{v_i : i = 1, \ldots, n\}$ for V.

For $\gamma \in \text{End}_F(V)$, there is a unique $A \in \text{Mat}_n(F)$ such that

$$\gamma(v_i) = \sum_{i=1}^n A_{ij} v_j$$

Call A the matrix that represents γ with respect to \ast

Note if $1 \in \text{End}_F(V)$

$$I = \text{matrix that reps } 1 \text{ rel } \ast.$$
Prop 5. With above notation, the map

\[\text{End}_F(V) \rightarrow \text{Mat}_n(F) \]

\[\phi \rightarrow \text{matrix rep } \phi \text{ rel } \ast \]

is an \(F \)-algebra isomorphism.

Proof. \(\phi \) is vector space iso by Prop 2 (with \(V = W \)).

Observe \(\phi = I \).

Show \(\phi \) respects mult.

For \(\phi, \psi \in \text{End}_F(V) \),

\[(\phi \circ \psi) \ast = \phi \ast \psi \ast \]

This is just \(c = \text{BA} \) from above for \(\ast \).

\(\square \)
Transition matrices

Given a vector space V over F

Given

- basis $\{e_1, \ldots, e_n\}$ for V
- basis $\{e'_1, \ldots, e'_n\}$ for V

There is a unique matrix $S \in \text{Mat}_n(F)$ such that

$$ v'_j = \sum_{i=1}^n S_{ij} v_i $$

Call S the transition matrix from V to V'

Given

- basis $\{e_1, \ldots, e_n\}$ for V

Compare

- transition matrix from V to V' $(= R)$
- transition matrix from V to V'' $(= S)$
- transition matrix from V' to V'' $(= T)$
For all \(n \),

\[
W_1 = \sum_{i=1}^{n} R_{i1} u_i \tag{1}
\]

Also,

\[
W_1 = \sum_{\lambda=1}^{\hat{n}} T_{\lambda} u_1
\]

\[
= \sum_{\lambda=1}^{\hat{n}} T_{\lambda} \left(\sum_{i=1}^{n} S_{i\lambda} u_i \right)
\]

\[
= \sum_{i=1}^{n} \left(\sum_{\lambda=1}^{\hat{n}} S_{i\lambda} T_{\lambda} \right) u_i
\]

For all \(n \), compare \(u_i \) - coeff to get

\[
R_{ij} = \sum_{\lambda=1}^{\hat{n}} S_{i\lambda} T_{\lambda j} \quad 1 \leq i, j \leq n
\]

In other words

\[
R = ST
\]
LEM 0
Given a vector space V over F

Given basis $\{u_1, \ldots, u_n\}$ for V

Let S be transormation from V to \mathbb{R}^n.

Then S is invertible in $\text{Mat}_n(F)$

Moreover S^{-1} is the transpose matrix for \mathbb{R}^n to V.

pf \hspace{1cm} \text{In the discussion above the lemma}

take $w_i = u_i$ for $i = 1, \ldots, n$

Then $x = x^T$ so

$I = R$

$= S T$

So $T = S^{-1}$

\square
Given two vector spaces V, W

Given

- basis $\{v_1, \ldots, v_n\}$ for V
- basis $\{v_1, \ldots, v_n\}$ for V'
- basis $\{w_1, \ldots, w_m\}$ for W
- basis $\{w_1, \ldots, w_m\}$ for W'

Given linear transformation $\phi : V \rightarrow W$

Compare

- matrix map ϕ with x and x'
- matrix map ϕ' with x' and x''

Let

$S = \text{trans matrix for } x \rightarrow x'$

$T = \text{trans matrix for } x' \rightarrow x''$
\[F_a \triangleq \psi(v) = \sum_{i=1}^{m} A_{i} v_i \]

\[\psi(v') = \sum_{a=1}^{\infty} A_{a} v'_a \]

\[\psi \left(\sum_{r=1}^{n} S_{r} v_r \right) = \sum_{a=1}^{\infty} A_{a} \left(\sum_{i=1}^{m} T_{i,a} v_i \right) \]

\[\sum_{r=1}^{n} S_{r} \psi(v) = \sum_{a=1}^{\infty} \left(\sum_{i=1}^{m} T_{i,a} A_{a} \right) v_i \]

\[\sum_{r=1}^{n} S_{r} \left(\sum_{i=1}^{m} A_{i} v_i \right) = \sum_{a=1}^{\infty} \left(\sum_{r=1}^{n} A_{a} S_{r} \right) v_i \]

\[\sum_{r=1}^{n} A_{i_r} S_{r} = \sum_{a=1}^{\infty} T_{a,i} A_{a} \]

So

In other words

\[A S = T A' \]

or

\[A' = T^{-1} A S \]