This is a Take Home Exam. You must work on it alone. You may use your class notes and the reference books.

1. Solve \(u_t = u_{xx} \) in \(0 < x < L \) with \(u(0,t) = \partial_x u(L,t) = 0 \) and \(u(x,0) = f(x) \) using (a) a series solution, (b) the Green’s function obtained by the method of images. Compare the two solutions (which will contain integrals involving the initial data \(f(x) \)).

2. Solve \(u_t = u_{xx} \) in \(0 < x < L \) with \(u(x,0) = f(x) \) and \(u(0,t) = g(t), u(L,t) = 0 \). Provide a general formula in terms of \(f(x) \) and \(g(t) \) then specify the explicit solution when \(f(x) = 1 \) and \(g(t) = e^{-t} \).

3. Find the Green’s function for the biharmonic operator \(\nabla^2 \nabla^2 \) in the plane then solve \(\nabla^2 \nabla^2 u = f(x,y) \) with \(u \) and its derivatives vanishing as \(x^2 + y^2 \to \infty \) and \(f(x,y) \) is smooth with compact support (i.e. vanishes outside of a bounded region).

4. Solve \(e^x u_x + u_y = 0 \) with \(u(x,0) = x \).

5. Solve the traffic flow problem \(\rho_t + q_x = 0 \) for initial conditions corresponding to a traffic light at \(x = 0 \) that turns from red to green at \(t = 0 \). The total number of cars that was waiting at the light is \(N < \infty \). The car flux \(q = \rho V \) where \(V(\rho) \) is a quadratic function with \(V(0) = V_{\text{max}}, V'(0) = 0 \) and \(V(\rho_{\text{max}}) = 0 \).

6. Solve \((u_x)^2 + u_y + u = 0 \) with \(u(x,0) = x \).