Problem 1

For the matrix $A = \begin{bmatrix} 1 & 2 & -2 & 3 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & -1 & 1 & 1 & 5 \end{bmatrix}$:

(a) Find a basis for the solution space (null space) of A, the subspace of \mathbb{R}^5 consisting of solutions of $A\vec{x} = \vec{0}$.

ANSWER:

First we reduce A to Reduced Row Echelon Form, getting $A_R = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$. We see that the fifth column does not contain a leading entry, so the corresponding variable x_5 can be given an arbitrary value. From the first row we see that $x_1 + x_5 = 0$, i.e. x_1 must be $-x_5$. Similarly from the remaining rows we get $x_2 = x_5$, $x_3 = -2x_5$, and $x_4 = -2x_5$. So solutions must look like $\begin{bmatrix} -x_5 \\ x_5 \\ -2x_5 \\ -2x_5 \\ x_5 \end{bmatrix}$, i.e. the solutions are all multiples of $\begin{bmatrix} -1 \\ 1 \\ -2 \\ -2 \\ 1 \end{bmatrix}$. Hence a basis for the solution space is $\left\{ \begin{bmatrix} -1 \\ 1 \\ -2 \\ -2 \\ 1 \end{bmatrix} \right\}$.

(b) What is the dimension of the null space of A (i.e. the nullity of A)?

ANSWER:

Since there was one vector in the basis, the dimension of the null space is 1.

Problem 2

For the matrix $A = \begin{bmatrix} 1 & 2 & -2 & 3 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & -1 & 1 & 1 & 5 \end{bmatrix}$ (the same matrix as in problem 1):

(a) What is the rank of A?

ANSWER:
We saw in the answer to problem 1 that the reduced row echelon form of $A_R = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$.

Since there are four non-zero rows in that matrix, the rank of A is 4.

(b) Find a basis for the row space of A.

ANSWER:

From (a) we know that the row space will be a four dimensional subspace of \mathbb{R}^5, so we know we need four 5-element row vectors. We could use the rows of A, or the rows of A_R.

Using the rows of A, one basis is $\{[1, 2, -2, 3, 1], [0, 1, 0, 0, -1], [0, 0, 1, 0, 2], [0, -1, 1, 1, 5]\}$.

(c) Find a basis for the column space of A that consists of some columns of A.

ANSWER:

We can use the columns from A_R that have leading entries to pick out columns from A.

The leading entries are in the first four columns, so we use $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \\ 1 \end{bmatrix}$.

Problem 3

For each of the following functions from \mathbb{R}^2 to \mathbb{R}^2, tell whether it is a linear transformation or not and give reasons for your answer:

(a) $L\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a+b \\ a+2b \end{bmatrix}$.

ANSWER:

This is a linear transformation. You could check it directly from the definition, or you could write it as $L\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a+b \\ a+2b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$. We know that multiplication by a matrix always gives a linear transformation.

(b) $L\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a+b \\ a+2 \end{bmatrix}$.

ANSWER:

This is not a linear transformation. $L\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, so this function does not take the zero vector to the zero vector, which any linear transformation must do.

(c) $L\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a-b \\ a^2 \end{bmatrix}$.

ANSWER:

This is not a linear transformation. If we can find any instance where the requirements for a linear transformation fail, that would justify this claim, so there are many possible reasons to give. I note that $L\left(2\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = L\left(\begin{bmatrix} 2 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$, while $2L\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = 2\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$. So this function does not satisfy $L(c\vec{v}) = cL(\vec{v})$.
Problem 4

Let
\[
A = \begin{bmatrix} -1 & -4 \\ -1 & 2 \end{bmatrix}.
\]

(a) Find the characteristic polynomial of \(A \),

ANSWER:

\[
\lambda I - A = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} -1 & -4 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \lambda + 1 & 4 \\ 1 & \lambda - 2 \end{bmatrix}
\]

The characteristic polynomial of \(A \) is the determinant of that matrix, i.e. \((\lambda + 1)(\lambda - 2) - 4 \times 1 = \lambda^2 - \lambda - 6\).

(b) What are the eigenvalues of \(A \)?

ANSWER:

We can factor \(\lambda^2 - \lambda - 6 \) as \((\lambda - 3)(\lambda + 2)\), so the eigenvalues are \(\lambda = 3 \) and \(\lambda = -2 \).

(c) For each of the eigenvalues, describe all of the eigenvectors.

ANSWER:

We substitute each value of \(\lambda \) into the matrix \(\lambda I - A \) above and solve the corresponding homogeneous equations.

For \(\lambda = 3 \):

\[
\begin{bmatrix} 4 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

has solutions \(x_1 = -x_2 \), i.e. all multiples of \(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \), so the eigenvectors are all the non-zero multiples of \(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \).

For \(\lambda = -2 \):

\[
\begin{bmatrix} -1 & 4 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

has solutions \(x_1 = x_2 \), i.e. all multiples of \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \), so the eigenvectors are all the non-zero multiples of \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \).

Problem 5

Assume \(L \) is a linear transformation from a vector space \(V \) to a vector space \(W \).

Prove that the range of \(L \) is a subspace of \(W \).

ANSWER:

The range, the set of all vectors \(\vec{w} \) in \(W \) such that \(\vec{w} = L(\vec{v}) \) for some \(\vec{v} \) in \(V \), is by definition a subset of \(W \). We need to show (a) it is not empty, (b) it is closed under addition, and (c) it is closed under multiplication by scalars.

(a) Since \(L(\vec{0}_V) = \vec{0}_W \) for any linear transformation from \(V \) to \(W \), we have that \(\vec{0}_W \) is \(L(\text{something in } V) \), so the range of \(L \) contains \(\vec{0}_W \), so the range is not empty.

(b) We need to show that the sum of any two vectors in the range produces a vector in the range. Suppose \(\vec{w}_1 \) and \(\vec{w}_2 \) are any two vectors in the range of \(L \). Since they are in the range, there must be vectors \(\vec{v}_1 \) and \(\vec{v}_2 \) in \(V \) such that \(\vec{w}_1 = L(\vec{v}_1) \) and \(\vec{w}_2 = L(\vec{v}_2) \). But then \(\vec{w}_1 + \vec{w}_2 = L(\vec{v}_1) + L(\vec{v}_2) \), and since \(L \) is a linear transformation that must be \(L(\vec{v}_1 + \vec{v}_2) \), so \(\vec{v}_1 + \vec{v}_2 \) is a vector in \(V \) that \(L \) takes to \(\vec{w}_1 + \vec{w}_2 \), hence \(\vec{w}_1 + \vec{w}_2 \) is in the range of \(L \).
(c) We need to show that any scalar multiple of a vector in the range of L is in the range of L. Let \vec{w} be any vector in the range of L, and let c be any scalar. Since \vec{w} is in the range, $\vec{w} = L(\vec{v})$ for some $\vec{v} \in V$. Then $c\vec{w} = cL(\vec{v}) = L(c\vec{v})$ (since L is a linear transformation), hence $c\vec{w}$ is “L of something in V”, i.e. $c\vec{w}$ is in the range of L.

Problem 6

Let L be the linear transformation from P_2 (the space of polynomials of degree at most two) to P_2 defined by $L(p(t)) = p'(t)$, the derivative of the polynomial function. Using the “standard” ordered basis $B = \{1, t, t^2\}$ (with the vectors in that order!):

(a) Find the matrix A representing L with respect to B and B.

ANSWER:

We apply L to (i.e. take the derivative of) each vector in B, and find the coordinate vector of the result with respect to B.

For the first vector 1 in B, the derivative gives 0 which is $0 \times 1 + 0 \times t + 0 \times t^2$, so the coordinate vector is $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. For the second vector t, the derivative is 1, so the coordinate vector is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Lastly, the derivative of t^2 is $2t = 0 \times 1 + 2 \times 2 + 0 \times t^2$, and the coordinate vector of that is $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$. Putting these together, the matrix is $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$.

(b) For the polynomial $p(t) = 3 - 2t + 2t^2$, what is the coordinate vector $[p(t)]_B$?

ANSWER:

Since $3 - 2t + 2t^2$ is already written as a linear combination of $1, t, t^2$, we can read off the coordinate vector $\begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}$.

(c) What is the coordinate vector $[L(p(t))]_B$ for $L(p(t))$?

ANSWER:

Taking the derivative, $L(3 - 2t + 2t^2) = -2 + 4t$, so its coordinate vector is $\begin{bmatrix} -2 \\ 4 \\ 0 \end{bmatrix}$.

(d) Use the matrix from (a) and the vectors from (b) and (c) to show that the matrix “does the right thing”, i.e. that multiplying a coordinate vector by the matrix does give you the coordinates for the result of applying L.

ANSWER:

$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ 0 \end{bmatrix}$.
Problem 7
Suppose that \(L \) is a linear transformation from a vector space \(V \) to a vector space \(W \), and that the kernel of \(L \) contains only the zero vector of \(V \). Show that \(L \) must be \(1 - 1 \).

ANSWER:
Assume that \(L \) is a linear transformation from \(V \) to \(W \) and that only \(\vec{0}_V \) is in the kernel of \(L \), i.e. \(\vec{0}_V \) is the only vector in \(V \) that \(L \) takes to \(\vec{0}_W \).

Then if \(L(\vec{u}) = L(\vec{v}) \), \(L(\vec{u}) - L(\vec{v}) = \vec{0}_W \), and since \(L \) is linear that tells us \(L(\vec{u} - \vec{v}) = \vec{0}_W \), i.e. \(\vec{u} - \vec{v} \) is in the kernel of \(L \). But the only vector in the kernel is \(\vec{0}_V \), so we must have \(\vec{u} - \vec{v} = \vec{0}_V \). Then \(\vec{u} = \vec{v} \). So we have shown that whenever \(L \) takes two vectors to the same result in \(W \), the two were really the same to begin with, i.e. \(L \) is \(1 - 1 \).

Problem 8
For the vector space \(V = \mathbb{R}^3 \), with ordered bases \(S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \) and \(T = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\} \):
Find the matrix \(P_{S \leftarrow T} \) for changing coordinates from \(T \) to \(S \).

ANSWER:
For each vector in \(T \), we find its coordinates with respect to \(S \). For the first vector, \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \), we need to solve \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) for \(a \), \(b \), and \(c \). You can set that up as a system of equations, but we can also just see the answer: That last vector in \(S \) is exactly what we want, so \(a = b = 0 \) and \(c = 1 \), and the coordinate vector is \(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \).

Now for the second vector, \(\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \), solving to make \(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) give that vector: The vectors multiplied by \(a \) and by \(b \) have 0 in the third entry, so \(c \) must be 2 to make the third place work out. But that puts a 2 in the middle place: We fix that by making \(b = -2 \). So far that puts a 0 in the top position, so we let \(a = -1 \) and get the coordinates as \(\begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix} \).

Moving to the third vector, in the same way we find \(\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \), so the coordinate vector is \(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \).

We assemble these as the matrix, getting \(P_{S \leftarrow T} = \begin{bmatrix} 0 & -1 & 1 \\ 0 & -2 & -1 \\ 1 & 2 & 1 \end{bmatrix} \).
Problem 9

The set of vectors $B = \left\{ \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3, the vector space of three element column vectors.

Using the ordinary “dot product” as an inner product on \mathbb{R}^3:

(a) Use the Gram-Schmidt process starting with B to find an orthogonal basis for \mathbb{R}^3, i.e. a basis where each pair of distinct vectors is orthogonal.

ANSWER:

To make the notation match both our textbook and my online description, I will give names to the three vectors making up S, $u_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, $u_2 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$, and $u_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$.

We create new vectors \vec{v}_1, \vec{v}_2, and \vec{v}_3 that are orthogonal as follows. Start by letting

$\vec{v}_1 = \vec{u}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$.

Now make \vec{v}_2 by starting with \vec{u}_2 and subtracting its projection onto \vec{v}_1: $\vec{v}_2 = \vec{u}_2 - \frac{(\vec{u}_2, \vec{v}_1)}{(\vec{v}_1, \vec{v}_1)} \vec{v}_1$.

$\vec{v}_2 = \vec{u}_2 - \frac{\vec{u}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \vec{u}_2 - \frac{12}{3} \vec{v}_1 = \vec{u}_2 - 4 \vec{v}_1$. But for now all we care about is orthogonality, not magnitude, so we could instead use 3 times that result, $3\vec{u}_2 - 4\vec{v}_1$, and not have to deal with fractions: (You did not need to do that, it just makes the arithmetic easier to follow!) We get $\vec{v}_2 = 3 \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} - 4 \begin{bmatrix} 1 \\ 2 \\ 9 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 8 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$.

(As a check, the dot product of v_1 and v_2 is now $(2 \times -2) + (1 \times 2) + (2 \times 1) = 0$, so these are indeed orthogonal!)

Now we construct \vec{v}_3 by starting with \vec{u}_3 and subtracting its projections onto each of \vec{v}_1 and \vec{v}_2, $\vec{v}_3 = \vec{u}_3 - \frac{(\vec{u}_3, \vec{v}_1)}{(\vec{v}_1, \vec{v}_1)} \vec{v}_1 - \frac{(\vec{u}_3, \vec{v}_2)}{(\vec{v}_2, \vec{v}_2)} \vec{v}_2$. Computing those inner (dot) products: We already had $\vec{v}_1 \cdot \vec{v}_1 = 1$. $\vec{u}_3 \cdot \vec{v}_1 = -2 + 1 + 0 = -1$. $\vec{u}_3 \cdot \vec{v}_2 = 2 + 2 = 4$. $\vec{v}_2 \cdot \vec{v}_2 = 4 + 4 + 1 = 9$. So the formula above gives us $\vec{v}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} - \frac{-1}{9} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \frac{4}{9} \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$. Again we can simplify things by using 9 times that vector for \vec{v}_3 to eliminate fractions, getting

$\vec{v}_3 = 9 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - 4 \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$, and again we can check that this does give 0 for the dot product with either \vec{v}_1 or \vec{v}_2. Summarizing, our new, orthogonal, basis is $\left\{ \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} \right\}$.
(b) Continue from what you found in (a) to get a basis which is orthonormal, i.e. in addition to being orthogonal it now has the magnitude (norm, size) of each vector equal to 1.

ANSWER:
We multiply each of these vectors by \(1/||\vec{v}|| \): Each has magnitude \(||\vec{v}|| = \sqrt{9} = 3 \), so the resulting vectors are

\[
\begin{pmatrix}
\frac{-2}{3} \\
\frac{-2}{3}
\end{pmatrix},
\begin{pmatrix}
\frac{1}{3} \\
\frac{-2}{3}
\end{pmatrix},
\begin{pmatrix}
\frac{1}{3} \\
\frac{-2}{3}
\end{pmatrix},
\begin{pmatrix}
\frac{1}{3} \\
\frac{-2}{3}
\end{pmatrix}
\].

Problem 10
Suppose \(L \) is a linear transformation from \(V \) to \(W \). Prove:
If \(L \) is \(1-1 \) and \(\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\} \) is a linearly independent set in \(V \), then \(\{L(\vec{v}_1), L(\vec{v}_2), \ldots, L(\vec{v}_k)\} \) is a linearly independent set in \(W \).

ANSWER:
We are given that \(L \) is a linear transformation from \(V \) to \(W \) which is \(1-1 \), so its kernel is just \(\vec{0}_V \). For the given linearly independent set \(\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\} \) in \(V \), consider the vectors \(L(\vec{v}_1), L(\vec{v}_2), \ldots, L(\vec{v}_k) \) in \(W \) and suppose some linear combination \(a_1L(\vec{v}_1) + a_2L(\vec{v}_2) + \cdots + a_kL(\vec{v}_k) \) gives the zero vector \(\vec{0}_W \) in \(W \). Since \(L \) is linear we can rewrite that as \(L(a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k) = \vec{0}_W \). But that says \(a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k \) is in the kernel of \(L \), so it must be \(\vec{0}_V \), i.e. \(a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k = \vec{0}_V \), but the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \) are linearly independent, so the coefficients \(a_1 = a_2 = \cdots = a_k = 0 \). Recapping, any linear combination of the vectors \(L(\vec{v}_1), L(\vec{v}_2), \ldots, L(\vec{v}_k) \) that gives \(\vec{0}_W \) must have all zero coefficients, so the vectors are linearly independent.