Normal numbers and perfect necklaces

Verónica Becher

Universidad de Buenos Aires & CONICET

Midwest Computability Seminar - 15 February 2021
Borel normal numbers

Let b be an integer greater than or equal to 2.

A real number is normal to base b if in its base-b expansion every block of digits occurs with the same limiting frequency as every other block of the same length.

Counterexamples:
0.010010001000001 ...
Borel normal numbers

Let \(b \) be an integer greater than or equal to 2.

A real number is normal to base \(b \) if in its base-\(b \) expansion every block of digits occurs with the same limiting frequency as every other block of the same length.

Coutexamples:

\[
0.010010001000001 \ldots \\
0.0101010101010101 \ldots
\]

In 1909 Borel gave this definition, proved that almost all real numbers are normal to all integer bases, and he asked for an example.
Borel’s question

All Martin-Löf random reals are normal to every base, in particular \(\Omega\)-numbers.

Constructions

Borel’s question is essentially open.
Champernowne’s example

Theorem (Champernowne 1933)

0.1234567891011121314151617181920212223… is normal to base 10.
 ARITHMÉTIQUE. — On suppose écrite la suite naturelle des nombres; quel est le \((10^{1000})^{\text{ième}}\) chiffre écrit? Note de M. ÉM. Barbier.

« 1. Pour écrire tous les nombres inférieurs à 11, il faut 11 fois 1 caractère; il faut 111 fois 2 caractères pour écrire les nombres inférieurs à 111; 1111 fois 3 caractères pour écrire tous les nombres inférieurs à 1111.

 Généralement, il faut, pour écrire tous les nombres inférieurs au nombre qui s'écrit par \((n+1)\) chiffres i consécutifs, un nombre de caractères égal au produit de \(n\) par le nombre de \((n+1)\) chiffres i consécutifs.

 La suite des nombres qui précèdent le nombre de 665 chiffres i emploie le nombre (irréalisable) de caractères

\[
664 \times 111111111 \ldots = 73777 \ldots 77704,
\]

nombre de 667 chiffres dont 663 sont des 7.

ARITHMÉTIQUE. — On suppose écrite la suite naturelle des nombres; quel est le \((10^{1000})^{\text{ième}}\) chiffre écrit? Note de M. ÉM. Barbier.

« 1. Nous avons déterminé le \((10^{10})^{\text{ième}}\), le \((10^{100})^{\text{ième}}\), le \((10^{1000})^{\text{ième}}\) chiffre; il arrive que la recherche du \((10^{10000})^{\text{ième}}\) chiffre ne demande pas un long calcul.

 Les nombres de 10000 chiffres

\[
11055 \ldots 554445 \text{ (ou } 9995 \times 11 \ldots 11) \text{, et } 99588 \ldots 888889
\]
THE CONSTRUCTION OF DECIMALS NORMAL IN THE SCALE OF TEN

D. G. CHAMPERNOWNE*.

A decimal \(\cdot S \) is said to be normal in the scale of ten if, when \(\gamma_p \) is an arbitrary sequence of an arbitrary number \(p \) of digits, and \(G(x) \) denotes the number of times that \(\gamma_p \) occurs as \(p \) consecutive digits in the first \(x \) digits of \(S \),

\[
G(x) = 10^{-p}x + o(x)
\]

as \(x \to \infty \). Rules have been given for the construction of such decimals, but these have always been somewhat involved.

Actually, a very simple construction is adequate; we shall, in fact, show in the course of this paper that the decimal \(\cdot123456789101112\ldots \), composed of the natural sequence of numbers counting from 1 upwards, is itself normal in the scale of ten.

First, we shall prove

Theorem I. If \(s_{r} \) denotes the sequence

\[
\cdot00\ldots0,00\ldots1,00\ldots2,\ldots,99\ldots9,
\]

* Received 19 April, 1933; read 27 April, 1933.
Champernowne’s proof

Instead, the concatenation of all blocks of n symbols in lexicographic order,

\[
\begin{align*}
&0123456789 & 0001\ldots9899 & 000001\ldots998999\ldots \\
&megablock 1 & megablock 2 & megablock 3
\end{align*}
\]

Champernowne’s proof counts:

- each digit
- each block of two digits

 \ldots
- each block of n digits

Difficulties:

- overlapping blocks

 \[
 000\ 001\ 002\ 003\ldots990\ 991\ 992\ 993\ 994\ 995\ 996\ 997\ 998\ 999
 \]

 Inside a megablock for length n Champernowne just counts inside blocks and bounds the number of occurrences in between blocks.

- count up to an arbitrary position within a megablock.
Our observation

For simplicity consider the alphabet \{0, 1\}.

In the megablock n viewed circularly, each block of length n occurs exactly n times at different positions modulo n.

<table>
<thead>
<tr>
<th>position</th>
<th>12 34 56 78</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 01 10 11</td>
<td></td>
</tr>
<tr>
<td>00 01 10 11</td>
<td>00 occurs twice, at positions different modulo 2</td>
</tr>
</tbody>
</table>
Our observation

For simplicity consider the alphabet \{0, 1\}.

In the megablock n viewed circularly, each block of length n occurs exactly n times at different positions modulo n.

<table>
<thead>
<tr>
<th>position</th>
<th>12 34 56 78</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00 01 10 11</td>
</tr>
</tbody>
</table>

00 occurs twice, at positions different modulo 2

01 occurs twice, at positions different modulo 2
Our observation

For simplicity consider the alphabet \(\{0, 1\} \).

In the megablock \(n \) viewed circularly, each block of length \(n \) occurs exactly \(n \) times at different positions modulo \(n \).

<table>
<thead>
<tr>
<th>position</th>
<th>12 34 56 78</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 01 10 11</td>
<td>00 occurs twice, at positions different modulo 2</td>
</tr>
<tr>
<td>00 01 10 11</td>
<td>01 occurs twice, at positions different modulo 2</td>
</tr>
<tr>
<td>00 01 10 11</td>
<td>10 occurs twice, at positions different modulo 2</td>
</tr>
</tbody>
</table>
Our observation

For simplicity consider the alphabet \{0, 1\}.

In the megablock \(n\) viewed circularly, each block of length \(n\) occurs exactly \(n\) times at different positions modulo \(n\).

<table>
<thead>
<tr>
<th>position</th>
<th>12 34 56 78</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00 01 10 11</td>
</tr>
</tbody>
</table>

00 occurs twice, at positions different modulo 2
01 occurs twice, at positions different modulo 2
10 occurs twice, at positions different modulo 2
11 occurs twice, at positions different modulo 2
For simplicity consider the alphabet \{0, 1\}.

In the megablock n viewed circularly, each block of length n occurs exactly n times at different positions modulo n.

<table>
<thead>
<tr>
<th>position</th>
<th>12 34 56 78</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00 01 10 11</td>
</tr>
</tbody>
</table>
Neither Barbier nor Champernowne noticed this!

In the megablock n viewed circularly, each block of length n occurs exactly n times at different positions modulo n.

000 001 010 011 100 101 110 111 000 occurs three times, at different positions modulo 3
000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111
...

However, not every permutation of the blocks of length n has the property:

00 10 11 01
Perfect necklaces

Definition (Alvarez, Becher, Ferrari and Yuhjtman 2016)

A necklace over a b-symbol alphabet is (n, k)-perfect if each block of length n occurs k times, at different position modulo k for any convention of the starting point.

De Bruijn sequences are exactly the $(n, 1)$-perfect sequences.

The (n, k)-perfect necklaces have length kb^n.
Megablocks are perfect necklaces

Identify the blocks of length n over a b-symbol alphabet with the set of non-negative integers modulo b^n according to representation in base b.

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

Let r coprime with b. *The concatenation of blocks corresponding to the arithmetic sequence $0, r, 2r, \ldots, (b^n - 1)r$ yields an (n, n)-perfect necklace.*

With $r = 1$ we obtain the lexicographically ordered sequence, this is the magablock for length n.
Megablocks for length n are perfect necklaces

A bijection $\sigma : \{0, \ldots, b - 1\}^n \to \{0, \ldots, b - 1\}^n$ is a cycle if
$\{\sigma^j(w) : j = 0, \ldots, b^n - 1\}$ is the set of all blocks of length n.

Lemma

Let σ be a cycle over blocks of length n and let v be one block.
The necklace $[\sigma^0(v)\sigma^1(v)\ldots\sigma^{b^n-1}(v)]$ is (n, n)-perfect if and only if
for every $\ell = 0, 1, \ldots n - 1$ for every block x of length ℓ and
for every block y of length $n - \ell$, there is a unique block w of length n
such that $w(n - \ell \ldots n - 1) = x$ and $(\sigma(w))(0 \ldots n - \ell - 1) = y$.

For every length-n block splitted in two parts, there is exactly one matching in
the cycle (a tail of a block and the head of next block).
Astute graphs

Fix b-symbol alphabet. The astute graph $G_{b,n,k}$ is directed, with kb^n vertices. The set of vertices is $\{0, \ldots, b-1\}^n \times \{0, \ldots, k-1\}$.

An edge $(w, m) \to (w', m')$ if $w(2, \ldots, n) = w'(1, \ldots, n - 1)$ and $(m + 1) \mod k = m'$.

This is $G_{2,2,2}$.
Astute graphs

Observation

$G_{b,n,1}$ is the de Bruijn graph of blocks of length n over b-symbols.

Observation

$G_{b,n,k}$ is Eulerian because it is strongly regular and strongly connected.
Eulerian cycles in astute graphs

Each Eulerian cycle in $G_{b,n-1,k}$ gives one (n, k)-perfect necklace.

Each (n, k)-perfect necklace can come from many Eulerian cycles in $G_{b,n-1,k}$

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

The number of (n, k)-perfect necklaces over a b-symbol alphabet is

$$
\frac{1}{k} \sum_{d_{b,k} | j | k} e(j) \varphi(k/j)
$$

where

- $d_{b,k} = \prod p_i^{\alpha_i}$, such that $\{p_i\}$ is the set of primes that divide both b and k, and α_i is the exponent of p_i in the factorization of k,
- $e(j) = (b!)^{j b^{n-1} b^{-n}}$ is the number of Eulerian cycles in $G_{b,n-1,j}$
- φ is Euler’s totient function
Normal sequences as sequences of Eulerian cycles

Theorem (proved first by Ugalde 2000 for de Bruijn)

The concatenation of \((n, k)\)-perfect necklaces over a \(b\)-symbol alphabet, for increasing \((n, k)\) –at most arithmetically– is normal to the \(b\)-symbol alphabet.

\[
\begin{array}{cccccccc}
\text{...} & \text{...} \\
\end{array}
\]
Proof of Theorem

A number is normal to base b if in its base-b expansion every block of digits occurs with the same limiting frequency as every other block of the same length.

\[\ldots \]

To prove that the sequence of megablocks is normal the count at an arbitrary position is bounded by considering the count at the end of the megablock. \[\square \]
Proof of Theorem

A number is normal to base b if in its base-b expansion every block of digits occurs with the same limiting frequency as every other block of the same length.

\[\text{...} \]

Instead, an equivalent formulation of normality but simpler to test:

Lemma (Piatetski-Shapiro 1951)

A sequence $a_1 a_2 a_3 \ldots$ is normal to a b-symbol alphabet if and only if there is a positive constant C such that for every block w,

\[
\limsup_{n \to \infty} \frac{\text{number of occurrences of } w \text{ in } a_1 \ldots a_n}{n} < C b^{-|w|}.
\]

To prove that the sequence of megablocks is normal the count at an arbitrary position is bounded by considering the count at the end of the megablock.
The concatenation of \((n, n)\)-perfect necklaces, \(n\) linearly increasing, is normal. Applying the same modification that Champernowne did we also obtain his result.

Corollary

Champernowne’s sequence \(0.12345678910112\ldots\) *is normal to base* 10.

End of the first part of the talk
Speed of convergence to normality

- A real x is normal to base b if the fractional parts of x, bx, b^2x, \ldots, that is $(b^n x \mod 1)_{n \geq 0}$, is uniformly distributed in the unit interval, Wall 1949.
Speed of convergence to normality

- A real x is normal to base b if the fractional parts of x, bx, b^2x, \ldots, that is $(b^n x \mod 1)_{n \geq 0}$, is uniformly distributed in the unit interval, Wall 1949.

- A sequence $(x_n)_{n \geq 1}$ is uniformly distributed in the unit interval if

 $$D_N((x_n)_{n \geq 1}) = \sup_{[\alpha, \beta]} \left| \frac{\# \{n \leq N : x_n \in [\alpha, \beta] \}}{N} - \gamma \right|$$

 goes to 0 as N to ∞.

Schmidt 1972 proved that there is constant C such that for every $(x_n)_{n \geq 1}$ there are infinite Ns, $D_N((x_n)_{n \geq 1}) > C \log N$.

This is optimal Van de Corput sequence has exactly this discrepancy.

It is still unknown whether the optimal order of discrepancy can be achieved by $(b^n x \mod 1)_{n \geq 0}$ for some real x, Korobov 1956.

The lowest discrepancy known for $(b^n x \mod 1)_{n \geq 0}$ is $O((\log N)^2/N)$ for a real x constructed by M. Levin 1999 using the Pascal triangle modulo 2.
Speed of convergence to normality

- A real x is normal to base b if the fractional parts of x, bx, b^2x, \ldots, that is $(b^n x \mod 1)_{n \geq 0}$, is uniformly distributed in the unit interval, Wall 1949.

- A sequence $(x_n)_{n \geq 1}$ is uniformly distributed in the unit interval if
 \[D_N((x_n)_{n \geq 1}) = \sup_{[\alpha, \beta]} \left| \frac{\#\{ n \leq N : x_n \in [\alpha, \beta] \}}{N} - \gamma \right| \text{ goes to 0 as } N \to \infty. \]

- Schmidt 1972 proved that there is constant C such that for every $(x_n)_{n \geq 1}$ there are infinite Ns, $D_N((x_n)_{n \geq 1}) > C' \frac{\log N}{N}$. This is optimal Van de Corput sequence has exactly this discrepancy.
Speed of convergence to normality

- A real x is normal to base b if the fractional parts of x, bx, b^2x, \ldots, that is $(b^n x \mod 1)_{n \geq 0}$, is uniformly distributed in the unit interval, Wall 1949.

- A sequence $(x_n)_{n \geq 1}$ is uniformly distributed in the unit interval if
 \[D_N((x_n)_{n \geq 1}) = \sup_{[\alpha, \beta]} \left| \frac{\# \{n \leq N : x_n \in [\alpha, \beta] \}}{N} - \gamma \right| \text{ goes to } 0 \text{ as } N \text{ to } \infty. \]

- Schmidt 1972 proved that there is constant C such that for every $(x_n)_{n \geq 1}$ there are infinite N's, $D_N((x_n)_{n \geq 1}) > C \frac{\log N}{N}$. This is optimal Van de Corput sequence has exactly this discrepancy.

- It is still unknown whether the optimal order of discrepancy can be achieved by $(b^n x \mod 1)_{n \geq 0}$ for some real x, Korobov 1956.
Speed of convergence to normality

- A real x is normal to base b if the fractional parts of x, bx, b^2x, \ldots, that is $(b^n x \mod 1)_{n \geq 0}$, is uniformly distributed in the unit interval, Wall 1949.

- A sequence $(x_n)_{n \geq 1}$ is uniformly distributed in the unit interval if
 \[D_N((x_n)_{n \geq 1}) = \sup_{[\alpha, \beta)} \left| \frac{\# \{ n \leq N : x_n \in [\alpha, \beta) \}}{N} - \gamma \right| \]
 goes to 0 as N to ∞.

- Schmidt 1972 proved that there is constant C such that for every $(x_n)_{n \geq 1}$ there are infinite Ns, $D_N((x_n)_{n \geq 1}) > C \frac{\log N}{N}$. This is optimal Van de Corput sequence has exactly this discrepancy.

- It is still unknown whether the optimal order of discrepancy can be achieved by $(b^n x \mod 1)_{n \geq 0}$ for some real x, Korobov 1956.

- The lowest discrepancy known for $(b^n x \mod 1)_{n \geq 0}$ is $O((\log N)^2/N)$ for a real x constructed by M. Levin 1999 using the Pascal triangle modulo 2.
Nested perfect necklaces

Definition (Becher and Carton 2019)

A sequence over a b-symbol alphabet is a nested (n, k)-perfect necklace if it is (n, k)-perfect and, in case $n > 1$, it is the concatenation of b nested $(n - 1, k)$-perfect necklaces.

For example, for alphabet $\{0, 1\}$, the following is a nested $(2, 2)$-perfect necklace:

$$0011 0110$$
Nested perfect necklaces

Definition (Becher and Carton 2019)

A sequence over a b-symbol alphabet is a nested (n, k)-perfect necklace if it is (n, k)-perfect and, in case $n > 1$, it is the concatenation of b nested $(n - 1, k)$-perfect necklaces.

For example, for alphabet $\{0, 1\}$, the following is a nested $(2, 2)$-perfect necklace

$$0011 \ 0110$$

The lexicographic order yields a perfect necklace but not nested,

$$0001 \quad 1011$$

not perfect \hspace{1cm} not perfect
Nested perfect necklaces

Definition (Becher and Carton 2019)

A sequence over a \(b \)-symbol alphabet is a nested \((n, k)\)-perfect necklace if it is \((n, k)\)-perfect and, in case \(n > 1 \), it is the concatenation of \(b \) nested \((n - 1, k)\)-perfect necklaces.

For example, for alphabet \{0, 1\}, the following is a nested \((2, 2)\)-perfect necklace

\[0011 0110\]

The lexicographic order yields a perfect necklace but not nested,

\[0001 1011\]

\(\text{not perfect}\) \(\text{not perfect}\)

Nested \((n, k)\)-perfect necklaces are pointed, which means an initial position
Nested perfect necklaces

These are nested \((2, 4)\)-perfect necklaces:

\[
\begin{align*}
00001111 & 01011010 \\
00111100 & 01101001 \\
00011110 & 01001011 \\
00101101 & 01111000 \\
00101101 & 01111000
\end{align*}
\]

The concatenation of the first two is a nested \((3, 4)\)-perfect necklace. The concatenation of the last two is a nested \((3, 4)\)-perfect necklace. The concatenation of all of them is a nested \((4, 4)\)-perfect necklace.
Nested perfect necklaces

Observation

Assume a b-symbol alphabet. For x a nested (n, n)-perfect necklace,

- Since x is (n, n)-perfect, each block of length n occurs n times in x, at different positions modulo n.

- Since x is nested, for every $i = 1, \ldots, n$, x is the concatenation of b^{n-i} nested (i, n)-perfect necklaces. So, in the prefix of x of length cnb^i each block of length i occurs $cn \pm \epsilon$ times with $\epsilon \leq 1$ ($c \pm \epsilon$ times at positions with the same congruence modulo n).
Levin’s constant and nested perfect necklaces

Theorem (Becher and Carton 2019)

The binary expansion of the number x defined by Levin 1999 using the Pascal triangle matrix modulo 2 is the concatenation of nested $(2^d, 2^d)$-perfect necklaces for $d = 0, 1, 2, \ldots$.

Theorem (Becher and Carton 2019)

For $d = 0, 1, 2, \ldots$ there are 2^{2^d-1} binary nested $(2^d, 2^d)$-perfect necklaces obtained by column rotations of the Pascal triangle matrix modulo 2.
Nested perfect necklaces

Lemma

Consider the concatenation of a nested \((n, n)\)-perfect necklace and a nested \((2n, 2n)\)-perfect necklace. In any segment of length \(nb^n\) each block of length \(n\) occurs \(n \pm \epsilon\) times at different positions modulo \(n\), with \(\epsilon \leq 2\).
Nested perfect necklaces

Lemma

Consider the concatenation of a nested \((n, n)\)-perfect necklace and a nested \((2n, 2n)\)-perfect necklace. In any segment of length \(nb^n\) each block of length \(n\) occurs \(n \pm \epsilon\) times at different positions modulo \(n\), with \(\epsilon \leq 2\).

Leading idea with \(b = 2\):

A nested \((2n, 2n)\)-perfect necklace is equal to
2 nested \((2n - 1, 2n)\)-perfect necklaces are equal to
2\(^2\) nested \((2n - 2, 2n)\)-perfect necklaces are equal to
...
2\(^n\) nested \((n, 2n)\)-perfect necklaces are equal to
2\(^{n+1}\) nested \((n - 1, 2n)\)-perfect necklaces.

Each nested \((n - 1, 2n)\)-perfect necklace has length \(2n2^{n-1} = n2^n\), and every block of length \((n - 1)\) occurs \(2n\) times, necessarily half followed by 0, the other half followed by 1. Thus, in a nested \((n - 1, 2n)\)-perfect necklace every block of length \(n\) occurs \(n\) times.
Nested perfect necklaces and low discrepancy

Theorem (Becher and Carton 2019)

Let b be a prime number. Every number x whose base-b expansion is the concatenation of nested $(2^d, 2^d)$-perfect necklaces for $d = 0, 1, 2 \ldots$ satisfies $D_N((b^n x \mod 1)_{n \geq 0})$ is $O((\log N)^2 / N)$.

We could not prove that it holds for arbitrary integer bases.
Open problems

- Give a graph interpretation to nested perfect necklaces
- Study perfect necklaces in higher dimensions
- Is there a Martin-Löf random real x such that for every N, $D_N((2^n x \mod 1)_{n \geq 1})$ is $O((\log N)^2/N)$?

