Regularity of fractional maximal functions

David Beltran

BCAM - Basque Center for Applied Mathematics

Madison Lectures in Fourier Analysis
Postdoctoral symposium

Madison, May 19, 2019

joint work with João Pedro Ramos and Olli Saari (Universität Bonn)
Maximal functions

The centered Hardy–Littlewood maximal function is

$$Mf(x) := \sup_{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)} |f(y)| dy$$
Maximal functions

The centered Hardy–Littlewood maximal function is

\[Mf(x) := \sup_{r > 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} |f(y)| \, dy \]

and its non-centered version, denoted by \(\tilde{M} \) is

\[\tilde{M}f(x) := \sup_{B(z, r) \ni x} \frac{1}{|B(z, r)|} \int_{B(z, r)} |f(y)| \, dy. \]
The centered Hardy–Littlewood maximal function is
\[
Mf(x) := \sup_{r > 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} |f(y)| \, dy
\]
and its non-centered version, denoted by \(\tilde{M} \) is
\[
\tilde{M}f(x) := \sup_{B(z, r) \ni x} \frac{1}{|B(z, r)|} \int_{B(z, r)} |f(y)| \, dy.
\]
Trivially,
\[
\|Mf\|_\infty \lesssim \|f\|_\infty,
\]
and the classical Hardy–Littlewood inequality is the weak \((1, 1)\) bound
\[
|\{ x \in \mathbb{R}^d : |Mf(x)| > \lambda \}| \leq \frac{C}{\lambda} \|f\|_1.
\]
What about the regularity of these operators?

Kinnunen (1997): for \(1 < p \leq \infty \), if \(f \in W^{1,p} \) then \(Mf \in W^{1,p} \) and
\[
\|Mf\|_p + \|\nabla Mf\|_p \lesssim \|f\|_p + \|\nabla f\|_p
\]
and moreover,
\[
|\nabla Mf(x)| \leq M(|\nabla f|)(x) \quad \text{a.e. } x \in \mathbb{R}^d.
\]
What about the regularity of these operators?

- Kinnunen (1997): for \(1 < p \leq \infty \), if \(f \in W^{1,p} \) then \(Mf \in W^{1,p} \) and
 \[
 \|Mf\|_p + \|\nabla Mf\|_p \lesssim \|f\|_p + \|\nabla f\|_p
 \]
 and moreover,
 \[
 |\nabla Mf(x)| \leq M(|\nabla f|)(x) \quad \text{a.e. } x \in \mathbb{R}^d.
 \]
What about the regularity of these operators?

- Kinnunen (1997): for $1 < p \leq \infty$, if $f \in W^{1,p}$ then $Mf \in W^{1,p}$ and
 \[\|Mf\|_p + \|\nabla Mf\|_p \lesssim \|f\|_p + \|\nabla f\|_p \]
 and moreover,
 \[|\nabla Mf(x)| \leq M(|\nabla f|)(x) \quad \text{a.e. } x \in \mathbb{R}^d. \]

Idea:
- M is sublinear: $M(f + g) \leq M(f) + M(g)$.
What about the regularity of these operators?

- Kinnunen (1997): for $1 < p \leq \infty$, if $f \in W^{1,p}$ then $Mf \in W^{1,p}$ and
 \[
 \|Mf\|_p + \|\nabla Mf\|_p \lesssim \|f\|_p + \|\nabla f\|_p
 \]
 and moreover,
 \[
 |\nabla Mf(x)| \leq M(|\nabla f|)(x) \quad \text{a.e. } x \in \mathbb{R}^d.
 \]

Idea:
- M is sublinear: $M(f + g) \leq M(f) + M(g)$.
- M commutes with translations: $Mf(x + h) = Mf_h(x), \quad f_h := f(x + h)$.
What about the regularity of these operators?

- Kinnunen (1997): for $1 < p \leq \infty$, if $f \in W^{1,p}$ then $Mf \in W^{1,p}$ and
 \[
 \|Mf\|_p + \|\nabla Mf\|_p \lesssim \|f\|_p + \|\nabla f\|_p
 \]
 and moreover,
 \[
 |\nabla Mf(x)| \leq M(|\nabla f|)(x) \quad \text{a.e. } x \in \mathbb{R}^d.
 \]

Idea:
- M is sublinear: $M(f + g) \leq M(f) + M(g)$.
- M commutes with translations: $Mf(x + h) = Mf_h(x)$, \(f_h := f(x + h) \)
 \[
 |D_h Mf(x)| = \left| \frac{Mf(x + h) - Mf(x)}{|h|} \right| \leq \left| \frac{M(f_h - f)(x)}{|h|} \right| = |M(D_h f)(x)|
 \]
What about the regularity of these operators?

- Kinnunen (1997): for $1 < p \leq \infty$, if $f \in W^{1,p}$ then $Mf \in W^{1,p}$ and

 $$\|Mf\|_p + \|\nabla Mf\|_p \lesssim \|f\|_p + \|\nabla f\|_p$$

 and moreover,

 $$|\nabla Mf(x)| \leq M(\|\nabla f\|)(x) \quad \text{a.e. } x \in \mathbb{R}^d.$$

Idea:

- M is sublinear: $M(f + g) \leq M(f) + M(g)$.
- M commutes with translations: $Mf(x + h) = Mf_h(x)$, $f_h := f(x + h)$

 $$|D_h Mf(x)| = \left| \frac{Mf(x + h) - Mf(x)}{|h|} \right| \leq \left| \frac{M(f_h - f)(x)}{|h|} \right| = |M(D_h f)(x)|$$

 so

 $$\|D_h Mf\|_p \leq \|M(D_h f)\|_p \lesssim \|D_h f\|_p.$$
What about the regularity of these operators?

- Kinnunen (1997): for \(1 < p \leq \infty \), if \(f \in W^{1,p} \) then \(Mf \in W^{1,p} \) and

\[
\| Mf \|_p + \| \nabla Mf \|_p \lesssim \| f \|_p + \| \nabla f \|_p
\]

and moreover,

\[
\| \nabla Mf(x) \| \leq M(\| \nabla f \|)(x) \quad \text{a.e. } x \in \mathbb{R}^d.
\]
What about the regularity of these operators?

- Kinnunen (1997): for $1 < p \leq \infty$, if $f \in W^{1,p}$ then $Mf \in W^{1,p}$ and

 $$\|Mf\|_p + \|\nabla Mf\|_p \lesssim \|f\|_p + \|\nabla f\|_p$$

 and moreover,

 $$|\nabla Mf(x)| \leq M(|\nabla f|)(x) \quad \text{a.e.} \ x \in \mathbb{R}^d.$$

- Of course M fails to be bounded on $W^{1,1}$. But what about

 $$\|\nabla Mf\|_1 \lesssim \|f\|_1 + \|\nabla f\|_1 ?$$
What about the regularity of these operators?

- Kinnunen (1997): for \(1 < p \leq \infty\), if \(f \in W^{1,p}\) then \(Mf \in W^{1,p}\) and
 \[
 \|Mf\|_p + \|\nabla Mf\|_p \lesssim \|f\|_p + \|\nabla f\|_p
 \]

 and moreover,
 \[
 |\nabla Mf(x)| \leq M(\|\nabla f\|)(x) \quad \text{a.e. } x \in \mathbb{R}^d.
 \]

- Of course \(M\) fails to be bounded on \(W^{1,1}\). But what about
 \[
 \|\nabla Mf\|_1 \lesssim \|f\|_1 + \|\nabla f\|_1 \quad ?
 \]

The \(W^{1,1}\) problem.
Tanaka (2002): for the non-centered maximal function \tilde{M} and $d = 1$,

$$\| (\tilde{M}f)' \|_{L^1(\mathbb{R})} \leq 2 \| f' \|_{L^1(\mathbb{R})};$$
Tanaka (2002): for the non-centered maximal function $\tilde{\mathcal{M}}$ and $d = 1$,

$$\| (\tilde{\mathcal{M}}f)' \|_{L^1(\mathbb{R})} \leq 2 \| f' \|_{L^1(\mathbb{R})};$$

refined later by Aldaz and Pérez-Lázaro (2006);

$$\text{Var}(\tilde{\mathcal{M}}f) \leq \text{Var}(f).$$
Tanaka (2002): for the non-centered maximal function \tilde{M} and $d = 1$,

$$\| (\tilde{M}f)' \|_{L^1(\mathbb{R})} \leq 2 \| f' \|_{L^1(\mathbb{R})};$$

refined later by Aldaz and Pérez-Lázaro (2006);

$$\text{Var}(\tilde{M}f) \leq \text{Var}(f).$$

Kurka (2015): for the centered M,

$$\text{Var}(Mf) \leq 240000 \text{Var}(f).$$
Endpoint Sobolev regularity

- Tanaka (2002): for the non-centered maximal function \tilde{M} and $d = 1$,
 \[\| (\tilde{M}f)' \|_{L^1(\mathbb{R})} \leq 2 \| f' \|_{L^1(\mathbb{R})}; \]
 refined later by Aldaz and Pérez-Lázarro (2006);
 \[\text{Var}(\tilde{M}f) \leq \text{Var}(f). \]

- Kurka (2015): for the centered M,
 \[\text{Var}(Mf) \leq 240000 \text{Var}(f). \]

- In higher dimensions, only known for \tilde{M} and radial functions, Luiro (2017):
 \[\| \nabla \tilde{M}f \|_{L^1(\mathbb{R}^d)} \lesssim \| \nabla f \|_{L^1(\mathbb{R}^d)}. \]
Fractional counterparts

For $0 < \beta < d$, define the fractional maximal function

$$M_\beta f(x) := \sup_{r > 0} \frac{r^\beta}{r^d} \int_{B(x,r)} |f| = \sup_{r > 0} \frac{1}{r^{d-\beta}} \int_{|y| \leq r} |f(x - y)| \, dy$$

and the fractional integrals as

$$I_\beta f(x) := c \int_{\mathbb{R}^d} \frac{f(x - y)}{|y|^{d-\beta}} \, dy, \quad \widehat{I_\beta f}(\xi) = |\xi|^{-\beta} \widehat{f}(\xi).$$
Fractional counterparts

For $0 < \beta < d$, define the fractional maximal function

$$M_\beta f(x) := \sup_{r > 0} \frac{r^\beta}{r^d} \int_{B(x, r)} |f| = \sup_{r > 0} \frac{1}{r^{d-\beta}} \int_{|y| \leq r} |f(x - y)| \, dy$$

and the fractional integrals as

$$I_\beta f(x) := c \int_{\mathbb{R}^d} \frac{f(x - y)}{|y|^{d-\beta}} \, dy, \quad \hat{I_\beta f}(\xi) = |\xi|^{-\beta} \hat{f}(\xi).$$

Relation is

$$M_\beta f(x) \leq I_\beta |f|(x)$$

and

$$\|I_\beta f\|_q \lesssim \|M_\beta f\|_q \lesssim \|f\|_p$$

whenever

$$\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}, \quad 1 < p < d/\beta.$$
Moreover, for $p = 1$, there is the corresponding weak-type counterpart:

$$\left\{|x \in \mathbb{R}^d : |M_\beta f(x)| > \lambda\right\|^\frac{d-\beta}{d} \leq \frac{C}{\lambda} \|f\|_1.$$
Moreover, for $p = 1$, there is the corresponding weak-type counterpart:

$$\{ x \in \mathbb{R}^d : |M_{\beta} f(x)| > \lambda \}^{\frac{d-\beta}{d}} \leq \frac{C}{\lambda} \| f \|_1.$$

Again, from Kinnunen’s result, one has

$$| \nabla M_{\beta} f(x)| \lesssim M_{\beta} (|\nabla f|)(x),$$

which implies

$$\| \nabla M_{\beta} f \|_q \lesssim \| \nabla f \|_p$$

if $1 < p < d/\beta$ and $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$.

But what about the endpoint case $p = 1$?
Moreover, for $p = 1$, there is the corresponding weak-type counterpart:

$$\{|x \in \mathbb{R}^d : |M_\beta f(x)| > \lambda \}|^{\frac{d-\beta}{d}} \leq \frac{C}{\lambda} \|f\|_1.$$

Again, from Kinnunen’s result, one has

$$|\nabla M_\beta f(x)| \lesssim M_\beta(|\nabla f|)(x),$$

which implies

$$\|\nabla M_\beta f\|_q \lesssim \|\nabla f\|_p$$

if $1 < p < d/\beta$ and $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$.

But what about the endpoint case $p = 1$?
Moreover, for $p = 1$, there is the corresponding weak-type counterpart:

$$\left| \{ x \in \mathbb{R}^d : |M_\beta f(x)| > \lambda \right| \frac{d-\beta}{d} \leq \frac{C}{\lambda} \| f \|_1.$$

Again, from Kinnunen’s result, one has

$$|\nabla M_\beta f(x)| \lesssim M_\beta(|\nabla f|)(x),$$

which implies

$$\| \nabla M_\beta f \|_q \lesssim \| \nabla f \|_p$$

if $1 < p < d/\beta$ and $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$.

But what about the endpoint case $p = 1$?

$\beta > 1$ holds as a consequence of a smoothing effect for M_β.

If $f \in L^p(\mathbb{R}^d)$ with $1 < p < \infty$,

$$D_i l_1 f(x) = -R_i f(x), \quad l_1 f(x) := c \int_{\mathbb{R}^d} \frac{f(x - y)}{|y|^{d-1}} \, dy$$

where

$$R_i f(x) = \lim_{\varepsilon \to 0} c \int_{|y| > \varepsilon} \frac{y_i}{|y|^{d+1}} f(x - y) \, dy$$

are the Riesz transforms.
Fractional integral: a smoothing property

- If $f \in L^p(\mathbb{R}^d)$ with $1 < p < \infty$,

$$D_i l_1 f(x) = -R_i f(x), \quad l_1 f(x) := c \int_{\mathbb{R}^d} \frac{f(x - y)}{|y|^{d-1}} \, dy$$

where

$$R_i f(x) = \lim_{\varepsilon \to 0} c \int_{|y| > \varepsilon} \frac{y_i}{|y|^{d+1}} f(x - y) \, dy$$

are the Riesz transforms.

- By boundedness of Riesz transforms,

$$\|D_i l_1 f\|_p = \|R_i f\|_p \lesssim \|f\|_p$$

for $1 < p < \infty$. Thus $l_1 : L^p \to \dot{W}^{1,p}$;
If $f \in L^p(\mathbb{R}^d)$ with $1 < p < \infty$,

$$D_i l_1 f(x) = -R_i f(x), \quad l_1 f(x) := c \int_{\mathbb{R}^d} \frac{f(x - y)}{|y|^{d-1}} \, dy$$

where

$$R_i f(x) = \lim_{\varepsilon \to 0} c \int_{|y| > \varepsilon} \frac{y_i}{|y|^{d+1}} f(x - y) \, dy$$

are the Riesz transforms.

By boundedness of Riesz transforms,

$$\|D_i l_1 f\|_p = \|R_i f\|_p \lesssim \|f\|_p$$

for $1 < p < \infty$. Thus $l_1 : L^p \to \dot{W}^{1,p}$;

f rough function, but $l_1 f$ is smooth of order 1
If $f \in L^p(\mathbb{R}^d)$ with $1 < p < \infty$,

$$D_i l_1 f(x) = -R_i f(x), \quad l_1 f(x) := c \int_{\mathbb{R}^d} \frac{f(x - y)}{|y|^{d-1}} \, dy$$

where

$$R_i f(x) = \lim_{\varepsilon \to 0} c \int_{|y| > \varepsilon} \frac{y_i}{|y|^{d+1}} f(x - y) \, dy$$

are the Riesz transforms.

By boundedness of Riesz transforms,

$$\|D_i l_1 f\|_p = \|R_i f\|_p \lesssim \|f\|_p$$

for $1 < p < \infty$. Thus $l_1 : L^p \to \dot{W}^{1,p}$;

f rough function, but $l_1 f$ is smooth of order 1

What happens for the fractional maximal function?
Fractional HL: the smoothing effect

Kinnunen–Saksman (2003): \(f \in L^p(\mathbb{R}^d) \) with \(1 < p < d \) and \(1 \leq \beta < d/p \)

\[
|\nabla M_\beta f(x)| \lesssim M_{\beta-1} f(x) \quad \text{a.e. } x \in \mathbb{R}^d.
\]
Fractional HL: the smoothing effect

Kinnunen–Saksman (2003): $f \in L^p(\mathbb{R}^d)$ with $1 < p < d$ and $1 \leq \beta < d/p$

$$|\nabla M_\beta f(x)| \lesssim M_{\beta-1} f(x) \quad \text{a.e. } x \in \mathbb{R}^d.$$

As a consequence

$$\|\nabla M_\beta f\|_q \lesssim \|f\|_p \quad \text{for } \frac{1}{q} = \frac{1}{p} - \frac{\beta - 1}{d}, \quad 1 < p \leq q < \infty.$$
Fractional HL: the smoothing effect

Kinnunen–Saksman (2003) : \(f \in L^p(\mathbb{R}^d) \) with \(1 < p < d \) and \(1 \leq \beta < d/p \)

\[|\nabla M_\beta f(x)| \lesssim M_{\beta-1} f(x) \quad \text{a.e. } x \in \mathbb{R}^d. \]

As a consequence

\[\|\nabla M_\beta f\|_q \lesssim \|f\|_p \quad \text{for} \quad \frac{1}{q} = \frac{1}{p} - \frac{\beta - 1}{d}, \quad 1 < p \leq q < \infty. \]

For \(\beta \geq 1 \), \(M_\beta : L^p \rightarrow \dot{W}^{1,q} \) i.e.,

\[f \text{ rough function, but } M_\beta f \text{ is smooth of order } 1 \text{ for } \beta \geq 1 \]
Fractional HL: the smoothing effect

Kinnunen–Saksman (2003) : $f \in L^p(\mathbb{R}^d)$ with $1 < p < d$ and $1 \leq \beta < d/p$

$$|\nabla M_\beta f(x)| \lesssim M_{\beta-1} f(x) \quad \text{a.e. } x \in \mathbb{R}^d.$$

As a consequence

$$\|\nabla M_\beta f\|_q \lesssim \|f\|_p \quad \text{for } \frac{1}{q} = \frac{1}{p} - \frac{\beta - 1}{d}, \quad 1 < p \leq q < \infty.$$

For $\beta \geq 1$, $M_\beta : L^p \to \dot{W}^{1,q}$ i.e.,

f rough function, but $M_\beta f$ is smooth of order 1 for $\beta \geq 1$

The $W^{1,1}$ problem for $1 \leq \beta < d$ then follows by Gagliardo–Nirenberg–Sobolev:

$$\|\nabla M_\beta f\|_{L^{d-\beta} (\mathbb{R}^d)} \lesssim \|M_{\beta-1} f\|_{L^{d-\beta} (\mathbb{R}^d)} \lesssim \|f\|_{L^{d-1} (\mathbb{R}^d)} \lesssim \|\nabla f\|_{L^1(\mathbb{R}^d)}.$$
Question: Does this smoothing effect persist when taking more singular averages?
Question: Does this smoothing effect persist when taking more singular averages? More precisely, averages over spheres as opposed to solid balls.

\[
S_\beta f(x) := \sup_{r>0} r^\beta |f * d\sigma_r(x)| = \sup_{r>0} r^\beta \left| \int_{S^{d-1}} f(x - ry) d\sigma(y) \right|
\]
Question: Does this smoothing effect persist when taking more singular averages? More precisely, averages over spheres as opposed to solid balls.

\[
S_\beta f(x) := \sup_{r>0} r^\beta |f \ast d\sigma_r(x)| = \sup_{r>0} r^\beta \left| \int_{S^{d-1}} f(x - ry) d\sigma(y) \right|.
\]

For \(\beta = 0 \), the best one can do is

\[
\|Sf\|_p \leq C\|f\|_p \quad \text{for} \quad \frac{d}{d - 1} < p \leq \infty.
\]

- Stein (1976) for \(d \geq 3 \)
- Bourgain (1986) for \(d = 2 \).
Question: Does this smoothing effect persist when taking more singular averages? More precisely, averages over spheres as opposed to solid balls.

\[S_\beta f(x) := \sup_{r>0} r^\beta |f * d\sigma_r(x)| = \sup_{r>0} r^\beta \left| \int_{S^{d-1}} f(x - ry) d\sigma(y) \right|. \]
Question: Does this smoothing effect persist when taking more singular averages? More precisely, averages over spheres as opposed to solid balls.

\[S_\beta f(x) := \sup_{r > 0} r^\beta |f \ast d\sigma_r(x)| = \sup_{r > 0} r^\beta \left| \int_{S^{d-1}} f(x - ry) d\sigma(y) \right|. \]

For \(\beta > 0 \), Schlag (1997), Schlag and Sogge (1997) and S. Lee (2003):

\[\| S_\beta f \|_{L^q} \lesssim \| f \|_{L^p} \quad \text{for} \quad \frac{1}{q} = \frac{1}{p} - \frac{\beta}{d} \]

if \(d \geq 2, p > d/(d - 1) \) and \(0 \leq \beta < \tilde{\beta}(p) \), where

\[\tilde{\beta}(p) := \begin{cases} \frac{d}{d-1} - \frac{2d}{p(d-1)} & \text{if} \quad \frac{d}{d-1} < p \leq \frac{d^2+1}{d(d-1)} \\ \frac{d-1}{p} & \text{if} \quad \frac{d^2+1}{d(d-1)} < p \leq \infty. \end{cases} \]
Question: Does this smoothing effect persist when taking more singular averages?
More precisely, averages over spheres as opposed to solid balls.

\[
S_\beta f(x) := \sup_{r>0} r^\beta |f * d\sigma_r(x)| = \sup_{r>0} r^\beta \left| \int_{S^{d-1}} f(x - ry) d\sigma(y) \right|.
\]
Question: Does this smoothing effect persist when taking more singular averages? More precisely, averages over spheres as opposed to solid balls.

\[
S_\beta f(x) := \sup_{r>0} r^{\beta} |f \ast d\sigma_r(x)| = \sup_{r>0} r^{\beta} \left| \int_{S^{d-1}} f(x - ry) d\sigma(y) \right|.
\]

Kinnunen’s general argument (sublinear + commute with translations) also yields

\[
|\nabla S_\beta f(x)| \leq S_\beta(\nabla f)(x),
\]
Question: Does this smoothing effect persist when taking more singular averages?

More precisely, averages over spheres as opposed to solid balls.

\[
S_\beta f(x) := \sup_{r>0} r^\beta |f \ast d\sigma_r(x)| = \sup_{r>0} r^\beta \left| \int_{S^{d-1}} f(x - ry) d\sigma(y) \right|.
\]

Kinnunen’s general argument (sublinear + commute with translations) also yields

\[
|\nabla S_\beta f(x)| \leq S_\beta (\nabla f)(x),
\]

but the Kinnunen–Saksman argument is more attached to the geometry of \(M \) and does not yield the corresponding smoothing effect

\[
|\nabla S_\beta f(x)| \preceq S_{\beta-1} f(x).
\]
The smoothing effect

Theorem (B.–Ramos–Saari, 2018)

Let $d \geq 5$, $d / (d - 2) < p \leq q < \infty$ and

$$
\beta(p) := \begin{cases}
\frac{d^2 - 2d - 1}{d - 1} - \frac{2d}{p(d-1)} & \text{if } \frac{d}{d-2} < p \leq \frac{d^2 + 1}{d^2 - 2d - 1} \\
\frac{d-1}{p} & \text{if } \frac{d^2 + 1}{d^2 - 2d - 1} < p \leq d - 1.
\end{cases}
$$

Assume that

$$
\frac{1}{q} = \frac{1}{p} - \frac{\beta - 1}{d}, \quad 1 \leq \beta < \beta(p).
$$

Then, for any $f \in L^p$, $S_\beta f$ is weakly differentiable and

$$
\| \nabla S_\beta f \|_{L^q} \lesssim \| f \|_{L^p}.
$$
The smoothing effect

Theorem (B.–Ramos–Saari, 2018)

Let \(d \geq 5, \) \(d/(d - 2) < p \leq q < \infty \) and

\[
\beta(p) := \begin{cases}
\frac{d^2 - 2d - 1}{d - 1} - \frac{2d}{p(d-1)} & \text{if } \frac{d}{d-2} < p \leq \frac{d^2 + 1}{d^2 - 2d - 1} \\
\frac{d-1}{p} & \text{if } \frac{d^2 + 1}{d^2 - 2d - 1} < p \leq d - 1.
\end{cases}
\]

Assume that

\[
\frac{1}{q} = \frac{1}{p} - \frac{\beta - 1}{d}, \quad 1 \leq \beta < \beta(p).
\]

Then, for any \(f \in L^p, \) \(S_\beta f \) is weakly differentiable and

\[
\| \nabla S_\beta f \|_{L^q} \lesssim \| f \|_{L^p}.
\]

\(f \) rough function, but \(S_\beta f \) is smooth of order 1 for \(\beta \geq 1 \).
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]

Let \(r_h \) be a good radius for \(M_\beta f(x + h) \).
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]

Let \(r_h \) be a good radius for

\[M_\beta f(x + h) = r_h^{\beta-d} \int_{B(x+h,r_h)} |f| . \]
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]

Let \(r_h \) be a good radius for \(M_\beta f(x + h) = r_h^{\beta - d} \int_{B(x + h, r_h)} |f|. \)
The Kinnunen–Saksman approach

Need to obtain an upper bound for

$$D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}.$$

Let r_h be a good radius for $M_\beta f(x + h) = r_h^{\beta - d} \int_{B(x+h,r_h)} |f|$.

![Diagram showing the relation between x, $x + h$, and the radii r_h and $r_h + |h|$]
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]

Let \(r_h \) be a good radius for \(M_\beta f(x + h) = r_h^{\beta - d} \int_{B(x+h,r_h)} |f| \).

\[M_\beta f(x) \geq (r_h + |h|)^{\beta - d} \int_{B(x,r_h+|h|)} |f| \]
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]

Let \(r_h \) be a good radius for \(M_\beta f(x + h) = r_h^{\beta - d} \int_{B(x+h,r_h)} |f| \).

\[
M_\beta f(x) \geq (r_h + |h|)^{\beta - d} \int_{B(x,r_h+|h|)} |f| \\
\geq (r_h + |h|)^{\beta - d} \int_{B(x+h,r_h)} |f|
\]
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]

Let \(r_h \) be a good radius for \(M_\beta f(x + h) = r_h^{\beta - d} \int_{B(x+h,r_h)} |f| \).

\[M_\beta f(x) \geq (r_h + |h|)^{\beta - d} \int_{B(x,r_h+|h|)} |f| \]

\[\geq (r_h + |h|)^{\beta - d} \int_{B(x+h,r_h)} |f| \]

\[D_h M_\beta f(x) \leq \frac{(r_h^{\beta - d} - (r_h + |h|)^{\beta - d})}{|h|} \int_{B(x+h,r_h)} |f| \]
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]

Let \(r_h \) be a good radius for

\[M_\beta f(x + h) = r_h^{\beta - d} \int_{B(x+h,r_h)} |f|. \]

\[M_\beta f(x) \geq (r_h + |h|)^{\beta - d} \int_{B(x,r_h+|h|)} |f| \]

\[\geq (r_h + |h|)^{\beta - d} \int_{B(x+h,r_h)} |f| \]

\[D_h M_\beta f(x) \leq \frac{(r_h^{\beta - d} - (r_h + |h|)^{\beta - d})}{|h|} \int_{B(x+h,r_h)} |f| \]

\[\leq (r_h + |h|)^{\beta - d - 1} \int_{B(x,r_h+|h|)} |f| \]
The Kinnunen–Saksman approach

Need to obtain an upper bound for

\[D_h M_\beta f(x) := \frac{M_\beta f(x + h) - M_\beta f(x)}{|h|}. \]

Let \(r_h \) be a good radius for \(M_\beta f(x + h) = r_h^{\beta-d} \int_{B(x+h,r_h)} |f| \).

\[
M_\beta f(x) \geq (r_h + |h|)^{\beta-d} \int_{B(x,r_h+|h|)} |f| \\
\geq (r_h + |h|)^{\beta-d} \int_{B(x+h,r_h)} |f| \\
D_h M_\beta f(x) \leq \frac{(r_h^{\beta-d} - (r_h + |h|)^{\beta-d})}{|h|} \int_{B(x+h,r_h)} |f| \\
\leq (r_h + |h|)^{\beta-d-1} \int_{B(x,r_h+|h|)} |f| \\
\leq M_{\beta-1} f(x)
\]
Finite differences

- If there is a finite constant A such that

 \[\|D_h f\|_{L^q} \leq A, \quad D_h f(x) = \frac{f(x + h) - f(x)}{|h|} \]

 for all $h \in \mathbb{R}^d$, then the weak derivatives of f exist and

 \[\|\nabla f\|_{L^q} \leq CA \]

 for a constant C only depending on the dimension d (for $1 < q < \infty$).
Finite differences

- If there is a finite constant A such that

$$\|D_h f\|_{L^q} \leq A, \quad D_h f(x) = \frac{f(x + h) - f(x)}{|h|}$$

for all $h \in \mathbb{R}^d$, then the weak derivatives of f exist and

$$\|\nabla f\|_{L^q} \leq CA$$

for a constant C only depending on the dimension d (for $1 < q < \infty$).

- Kinnunen’s principle:
Finite differences

- If there is a finite constant A such that
 \[\|D_h f\|_{L^q} \leq A, \quad D_h f(x) = \frac{f(x + h) - f(x)}{|h|} \]
 for all $h \in \mathbb{R}^d$, then the weak derivatives of f exist and
 \[\|\nabla f\|_{L^q} \leq CA \]
 for a constant C only depending on the dimension d (for $1 < q < \infty$).

- Kinnunen’s principle:
 - S_β is sublinear: $S_\beta(f + g) \leq S_\beta f + S_\beta g$.
 - S_β commutes with translations
 \[|D_h S_\beta f(x)| \leq |S_\beta D_h f(x)|. \]
If there is a finite constant A such that
\[\| D_h f \|_{L^q} \leq A, \]
\[D_h f(x) = \frac{f(x + h) - f(x)}{|h|} \]
for all $h \in \mathbb{R}^d$, then the weak derivatives of f exist and
\[\| \nabla f \|_{L^q} \leq CA \]
for a constant C only depending on the dimension d (for $1 < q < \infty$).

Kinnunen’s principle:
- S_β is sublinear: $S_\beta(f + g) \leq S_\beta f + S_\beta g$.
- S_β commutes with translations
\[|D_h S_\beta f(x)| \leq |S_\beta D_h f(x)|. \]
So enough to establish
\[\| S_\beta D_h f \|_q \lesssim \| f \|_p \]
uniformly in $h \in \mathbb{R}^d$.
A Fourier transform look

\[S_\beta D_h f(x) = \sup_{r > 0} |r^\beta \sigma_r * D_h f(x)| \]
A Fourier transform look

\[S_\beta D_h f(x) = \sup_{r > 0} |r^\beta \sigma_r * D_h f(x)| \]

\[\widehat{D_h f}(\xi) = \frac{e^{i \xi \cdot h} - 1}{|h|} \widehat{f}(\xi) \]
A Fourier transform look

\[S_\beta D_h f(x) = \sup_{r>0} |r^\beta \sigma_r * D_h f(x)| \]

\[\widehat{D_h f}(\xi) = \frac{e^{i\xi \cdot h} - 1}{|h|} \hat{f}(\xi) = \frac{e^{i\xi \cdot h} - 1}{|h||\xi|} \hat{f}(\xi)|\xi| \]
A Fourier transform look

\[S_\beta D_h f(x) = \sup_{r > 0} |r^\beta \sigma_r \ast D_h f(x)| \]

\[\widehat{D_h f}(\xi) = \frac{e^{i\xi \cdot h} - 1}{|h|} \hat{f}(\xi) = \frac{e^{i\xi \cdot h} - 1}{|h||\xi|} \hat{f}(\xi)|\xi| =: a^h(\xi) \hat{f}(\xi)|\xi| \]
A Fourier transform look

$$S_\beta D_h f(x) = \sup_{r > 0} \left| r^\beta \sigma_r * D_h f(x) \right|$$

$$\hat{D_h f}(\xi) = \frac{e^{i\xi \cdot h} - 1}{|h|} \hat{f}(\xi) = \frac{e^{i\xi \cdot h} - 1}{|h||\xi|} \hat{f}(\xi)|\xi| =: a^h(\xi) \hat{f}(\xi)|\xi| =: \hat{T}^h(\xi)|\xi|.$$
A Fourier transform look

\[S_\beta D_h f(x) = \sup_{r > 0} |r^\beta \sigma_r \ast D_h f(x)| \]

\[\widehat{D_h f}(\xi) = \frac{e^{i\xi \cdot h} - 1}{|h|} \hat{f}(\xi) = \frac{e^{i\xi \cdot h} - 1}{|h||\xi|} \hat{f}(\xi)|\xi| =: a^h(\xi) \hat{f}(\xi)|\xi| =: \widehat{T^h}(\xi)|\xi|. \]

Then,

\[S_\beta D_h f(x) = \sup_{r > 0} \left| \mathcal{F}^{-1} \left(r^{\beta - 1}(r|\xi|) \hat{\sigma}(r\xi) \mathcal{F}(T^h f) \right) (x) \right|. \]
A Fourier transform look

\[S_\beta D_h f(x) = \sup_{r > 0} |r^\beta \sigma_r \ast D_h f(x)| \]

\[\hat{D_h f}(\xi) = \frac{e^{i \xi \cdot h} - 1}{|h|} \hat{f}(\xi) = \frac{e^{i \xi \cdot h} - 1}{|h||\xi|} \hat{f}(\xi)|\xi| =: a^h(\xi) \hat{f}(\xi)|\xi| =: \hat{T^h}(\xi)|\xi|. \]

Then,

\[S_\beta D_h f(x) = \sup_{r > 0} \left| \mathcal{F}^{-1} \left(r^{\beta - 1} (r|\xi|) \tilde{\sigma}(r\xi) \mathcal{F}(T^h f) \right) (x) \right|. \]

Note

\[|\partial^\gamma a^h(\xi)| \lesssim |\xi|^{-|\gamma|} \quad \text{for all multi-indexes } \gamma \in \mathbb{N}_0^d, \]
A Fourier transform look

\[S_{\beta} D_h f(x) = \sup_{r > 0} |r^\beta \sigma_r \ast D_h f(x)| \]

\[\hat{D_h f}(\xi) = \frac{e^{i \xi \cdot h} - 1}{|h|} \hat{f}(\xi) = \frac{e^{i \xi \cdot h} - 1}{|h||\xi|} \hat{f}(\xi)|\xi| =: a^h(\xi) \hat{f}(\xi)|\xi| =: \hat{T}^h(\xi)|\xi|. \]

Then,

\[S_{\beta} D_h f(x) = \sup_{r > 0} \left| \mathcal{F}^{-1} \left(r^{\beta - 1} (r|\xi|) \sigma_r(\xi) \mathcal{F}(T^h f) \right)(x) \right|. \]

Note

\[|\partial^\gamma a^h(\xi)| \lesssim |\xi|^{-|\gamma|} \quad \text{for all multi-indexes } \gamma \in \mathbb{N}_0^d, \]

\(T_h \) is bounded on \(L^p \), uniformly in \(h \in \mathbb{R}^d \) for all \(1 < p < \infty \) (Mikhlin–Hörmander multiplier).
The Fourier transform of the spherical measure is

\[\hat{\sigma}(\xi) = 2\pi |\xi|^{-\frac{d-2}{2}} J_{\frac{d-2}{2}} (2\pi |\xi|) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|}, \]

where

\[|\partial_\xi^\gamma a_{\pm}(\xi)| \lesssim (1 + |\xi|)^{-\frac{d-1}{2} - |\gamma|} \]

for all multi-indices \(\gamma \in \mathbb{N}_0^d \).
Spherical measure

The Fourier transform of the spherical measure is

\[\hat{\sigma}(\xi) = 2\pi |\xi|^{-\frac{d-2}{2}} J_{d-2} (2\pi |\xi|) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|}, \]

where

\[|\partial_{\xi}^\gamma a_{\pm}(\xi)| \lesssim (1 + |\xi|)^{-\frac{d-1}{2} - |\gamma|} \]

for all multi-indices \(\gamma \in \mathbb{N}_0^d \).

When studying \((r|\xi|)\hat{\sigma}(r\xi) \):

- Low/high frequencies depend on \(r \): \(|\xi| \sim 1/r \).
The Fourier transform of the spherical measure is

$$\hat{\sigma}(\xi) = 2\pi |\xi|^{-\frac{d-2}{2}} J_{\frac{d-2}{2}} (2\pi |\xi|) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|},$$

where

$$|\partial_\xi^\gamma a_{\pm}(\xi)| \lesssim (1 + |\xi|)^{-\frac{d-1}{2} - |\gamma|}$$

for all multi-indices $\gamma \in \mathbb{N}_0^d$.

When studying $(r|\xi|)\hat{\sigma}(r\xi)$:

- Low/high frequencies depend on r: $|\xi| \sim 1/r$.
- $(r|\xi|)$ helps with low frequencies \rightarrow decay.
The Fourier transform of the spherical measure is
\[
\hat{\sigma}(\xi) = 2\pi |\xi|^{-\frac{d-2}{2}} J_{\frac{d-2}{2}} (2\pi |\xi|) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|},
\]
where
\[
|\partial_\xi^\gamma a_{\pm}(\xi)| \lesssim (1 + |\xi|)^{-\frac{d-1}{2} - |\gamma|}
\]
for all multi-indices \(\gamma \in \mathbb{N}_0^d\).

When studying \((r|\xi|)\hat{\sigma}(r\xi)\):

- Low/high frequencies depend on \(r\): \(|\xi| \sim 1/r\).
- \((r|\xi|)\) helps with low frequencies \(\rightarrow\) decay.
- \((r|\xi|)\) gives one order Fourier growth for high freq \(\rightarrow\) \(d\) “replaced” by \(d - 2\).
Single scale reduction for \((q \geq 2)\)

Want to fix \(r\):

\[
\sup_{r > 0} \sup_{k \in \mathbb{Z}} \sup_{2^{-k} < r \leq 2^{-k+1}} \left(\sum_{k \in \mathbb{Z}} \left| \sup_{2^{-k} < r \leq 2^{-k+1}} |q| \right) \right)^{1/q} \leq \left(\sum_{k \in \mathbb{Z}} \left(\sum_{2^{-k} < r \leq 2^{-k+1}} |q| \right)^{1/q} \right)^{1/q}
\]
Single scale reduction for \(q \geq 2 \)

Want to fix \(r \):

\[
\sup_{r > 0} \sup_{k \in \mathbb{Z}} \sup_{2^{-k} \leq r \leq 2^{-(k+1)}} |q|^{1/q} \leq \left(\sum_{k \in \mathbb{Z}} \sup_{2^{-k} \leq r \leq 2^{-(k+1)}} |q| \right)^{1/q}
\]

Want to quantify \(|\xi| \sim 2^j\) to make effective use of decay/growth of multiplier.
Single scale reduction for \((q \geq 2)\)

Want to fix \(r\):

\[
\sup_{r > 0} \sup_{k \in \mathbb{Z}} \sup_{2^{-k} \leq r \leq 2^{-k+1}} \left(\sum_{k \in \mathbb{Z}} \sup_{2^{-k} \leq r \leq 2^{-k+1}} |q| \right)^{1/q}
\]

Want to quantify \(|\xi| \sim 2^j\) to make effective use of decay/growth of multiplier.

If

\[
\left\| \sup_{1 \leq r \leq 2} \left| \mathcal{F}^{-1}(r^{\beta - 1}(r|\xi|)\hat{\sigma}(r\xi)\hat{f}_j) \right| \right\|_{L^q} \lesssim \left(2^{js_1}1\{j \leq 0\} + 2^{-js_2}1\{j > 0\} \right) \|f_j\|_{L^p}
\]

for \(s_1, s_2 > 0\),
Single scale reduction for \((q \geq 2) \)

Want to fix \(r \):

\[
\sup_{r>0} \sup_{k \in \mathbb{Z}} \sup_{2^{-k} \leq r \leq 2^{-k+1}} \leq \left(\sum_{k \in \mathbb{Z}} \sup_{2^{-k} \leq r \leq 2^{-k+1}} |q| \right)^{1/q}
\]

Want to quantify \(|\xi| \sim 2^j \) to make effective use of decay/growth of multiplier.

If

\[
\left\| \sup_{1 \leq r \leq 2} \left| \mathcal{F}^{-1} (r^{\beta-1} (r|\xi|) \hat{\sigma}(r\xi) \hat{f}_j) \right| \right\|_{L^q} \lesssim (2^{js_1} 1_{\{j \leq 0\}} + 2^{-js_2} 1_{\{j > 0\}}) \|f_j\|_{L^p}
\]

for \(s_1, s_2 > 0 \), rescaling gives

\[
\left\| \sup_{2^{-k} \leq r \leq 2^{-k+1}} \left| \mathcal{F}^{-1} (r^{\beta-1} (r|\xi|) \hat{\sigma}(r\xi) \hat{f}_{j+k}) \right| \right\|_{L^q} \lesssim (2^{js_1} 1_{\{j \leq 0\}} + 2^{-js_2} 1_{\{j > 0\}}) \|f_{j+k}\|_{L^p}
\]

under the relation \(\frac{1}{q} = \frac{1}{p} - \frac{\beta-1}{d} \).
Single scale reduction for \((q \geq 2)\)

Want to fix \(r\):

\[
\sup_{r > 0} \sup_{k \in \mathbb{Z}} 2^{-k} \leq r \leq 2^{-k+1} \leq \left(\sum_{k \in \mathbb{Z}} \left| \sup_{2^{-k} \leq r \leq 2^{-k+1}} |q| \right| \right)^{1/q}
\]

Want to quantify \(|\xi| \sim 2^j\) to make effective use of decay/growth of multiplier.

If

\[
\left\| \sup_{1 \leq r \leq 2} |\mathcal{F}^{-1}(r^{\beta-1}(r|\xi|)\hat{\sigma}(r\xi)\hat{f}_j)|\right\|_{L^q} \lesssim (2^{js_1}1_{\{j \leq 0\}} + 2^{-js_2}1_{\{j > 0\}}) \|f_j\|_{L^p}
\]

for \(s_1, s_2 > 0\), rescaling gives

\[
\left\| \sup_{2^{-k} \leq r \leq 2^{-k+1}} |\mathcal{F}^{-1}(r^{\beta-1}(r|\xi|)\hat{\sigma}(r\xi)\hat{f}_{j+k})|\right\|_{L^q} \lesssim (2^{js_1}1_{\{j \leq 0\}} + 2^{-js_2}1_{\{j > 0\}}) \|f_{j+k}\|_{L^p}
\]

under the relation \(\frac{1}{q} = \frac{1}{p} - \frac{\beta-1}{d}\).

Decay in \(j\) and Littlewood–Paley theory in \(k\) allows one to sum.
Lee’s interpolation scheme \((d \geq 5)\)

The \(L^p - L^q\) estimates for \(S^1f \coloneqq \sup_{1 \leq r \leq 2} |\sigma_r \ast f|\) when \(d \geq 3\) follow from interpolating

\[
\begin{align*}
\|S^1 f_j\|_{L^1} &\lesssim 2^j \|f_j\|_{L^1} \\
\|S^1 f_j\|_{L^\infty} &\lesssim 2^j \|f_j\|_{L^1} \\
\|S^1 f_j\|_{L^\infty} &\lesssim \|f_j\|_{L^\infty} \\
\|S^1 f_j\|_{L^2} &\lesssim 2^{-\frac{d-2}{2}j} \|f_j\|_{L^2} \\
\|S^1 f_j\|_{L^{\frac{2(d+1)}{d-1}}} &\lesssim 2^{-j \frac{d^2-2d-1}{2d+2}} \|f_j\|_{L^2}.
\end{align*}
\]

and getting the values for \(p\) and \(q\) such that

\[
\|S^1 f_j\|_{L^q} \lesssim 2^{-j \varepsilon(p,q)} \|f_j\|_{L^p}.
\]
Lee’s interpolation scheme \((d \geq 5)\)

The \(L^p - L^q\) estimates for \(S^{\sim 1} f := \sup_{1 \leq r \leq 2} |\sigma_r \ast f|\) when \(d \geq 3\) follow from interpolating

\[
\|S^{\sim 1} f_j\|_{L^1} \lesssim 2^j \|f_j\|_{L^1}
\]
\[
\|S^{\sim 1} f_j\|_{L^\infty} \lesssim 2^j \|f_j\|_{L^1}
\]
\[
\|S^{\sim 1} f_j\|_{L^\infty} \lesssim \|f_j\|_{L^\infty}
\]
\[
\|S^{\sim 1} f_j\|_{L^2} \lesssim 2^{-\frac{d-2}{2} j} \|f_j\|_{L^2}
\]
\[
\|S^{\sim 1} f_j\|_{L^{\frac{2(d+1)}{d-1}}} \lesssim 2^{-j \frac{d^2-2d-1}{2d+2}} \|f_j\|_{L^2}.
\]

and getting the values for \(p\) and \(q\) such that

\[
\|S^{\sim 1} f_j\|_{L^q} \lesssim 2^{-j \varepsilon(p,q)} \|f_j\|_{L^p}.
\]

Bounds for \(f \mapsto \sup_{1 \leq r \leq 2} |\mathcal{F}^{-1}((r|\xi|)\hat{\sigma}(r\xi)\hat{f})|\) follow from bounds for

\[
f \mapsto S^{\sim 1} g, \quad \text{where} \quad \hat{g}(\xi) = \hat{f}(\xi)|\xi|.
\]
Lee’s interpolation scheme \((d \geq 5)\)

The \(L^p - L^q\) estimates for \(S^1 f := \sup_{1 \leq r \leq 2} |\sigma_r * f|\) when \(d \geq 3\) follow from interpolating

\[
\|S^1 f_j\|_{L^1} \lesssim 2^j \|f_j\|_{L^1} \quad \|S^1 g_j\|_{L^1} \lesssim 2^{2j} \|f_j\|_{L^1}
\]

\[
\|S^1 f_j\|_{L^\infty} \lesssim 2^j \|f_j\|_{L^1} \quad \|S^1 g_j\|_{L^\infty} \lesssim 2^{2j} \|f_j\|_{L^1}
\]

\[
\|S^1 f_j\|_{L^\infty} \lesssim \|f_j\|_{L^\infty} \quad \|S^1 g_j\|_{L^\infty} \lesssim 2^j \|f_j\|_{L^\infty}
\]

\[
\|S^1 f_j\|_{L^2} \lesssim 2^{-\frac{d-2}{2}j} \|f_j\|_{L^2} \quad \|S^1 g_j\|_{L^2} \lesssim 2^{-\frac{d-4}{2}j} \|f_j\|_{L^2}
\]

\[
\|S^1 f_j\|_{L^\frac{2(d+1)}{d-1}} \lesssim 2^{-j \frac{d^2-2d-1}{2d+2}} \|f_j\|_{L^2} \quad \|S^1 g_j\|_{L^\frac{2(d+1)}{d-1}} \lesssim 2^{-j \frac{d^2-4d-3}{2d+2}} \|f_j\|_{L^2}
\]

and getting the values for \(p\) and \(q\) such that

\[
\|S^1 f_j\|_{L^q} \lesssim 2^{-j \epsilon(p,q)} \|f_j\|_{L^p}.
\]

Bounds for \(f \mapsto \sup_{1 \leq r \leq 2} |F^{-1}(\xi)(\nu(\xi)(\hat{f})|\) follow from bounds for

\[
f \mapsto S^1 g, \quad \text{where} \quad \hat{g}(\xi) = \hat{f}(\xi) |\xi|.
\]
Lee’s interpolation scheme \((d \geq 5)\)

The \(L^p - L^q\) estimates for \(S^1 f := \sup_{1 \leq r \leq 2} |\sigma_r * f|\) when \(d \geq 3\) follow from interpolating

\[
\begin{align*}
\|S^1 f\|_{L^1} &\lesssim 2^j \|f\|_{L^1} \\
\|S^1 f\|_{L^\infty} &\lesssim 2^j \|f\|_{L^1} \\
\|S^1 f\|_{L^\infty} &\lesssim \|f\|_{L^\infty} \\
\|S^1 f\|_{L^2} &\lesssim 2^{-\frac{d-2}{2} j} \|f\|_{L^2} \\
\|S^1 f\|_{L^{\frac{2(d+1)}{d-1}}} &\lesssim 2^{-j \frac{d^2-2d-1}{2d+2}} \|f\|_{L^2}.
\end{align*}
\]

and getting the values for \(p\) and \(q\) such that

\[
\|S^1 f\|_{L^q} \lesssim 2^{-j \varepsilon(p,q)} \|f\|_{L^p}.
\]

Bounds for \(f \mapsto \sup_{1 \leq r \leq 2} |\mathcal{F}^{-1}((r|\xi|)\hat{\sigma}(r\xi)\hat{f})|\) follow from bounds for

\(f \mapsto S^1 g\), \quad \text{where} \quad \hat{g}(\xi) = \hat{f}(\xi)|\xi|.

Lee’s interpolation scheme ($d \geq 5$)

The $L^p - L^q$ estimates for $S^{1}f := \sup_{1 \leq r \leq 2} |\sigma_{r} * f|$ when $d \geq 3$ follow from interpolating

\[
\|S^{1}f_{j}\|_{L^{1}} \lesssim 2^{j} \|f_{j}\|_{L^{1}} \quad \|S^{1}g_{j}\|_{L^{1}} \lesssim 2^{2j} \|f_{j}\|_{L^{1}}
\]
\[
\|S^{1}f_{j}\|_{L^{\infty}} \lesssim 2^{j} \|f_{j}\|_{L^{1}} \quad \|S^{1}g_{j}\|_{L^{\infty}} \lesssim 2^{j} \|f_{j}\|_{L^{1}}
\]
\[
\|S^{1}f_{j}\|_{L^{\infty}} \lesssim \|f_{j}\|_{L^{\infty}}
\]
\[
\|S^{1}f_{j}\|_{L^{2}} \lesssim 2^{\frac{d-2}{2}j} \|f_{j}\|_{L^{2}} \quad \|S^{1}g_{j}\|_{L^{2}} \lesssim 2^{2j} \|f_{j}\|_{L^{2}}
\]
\[
\|S^{1}f_{j}\|_{L^{\frac{2(d+1)}{d-1}}} \lesssim 2^{-j \frac{d^{2}-2d-1}{2d+2}} \|f_{j}\|_{L^{2}}. \quad \|S^{1}g_{j}\|_{L^{\frac{2(d+1)}{d-1}}} \lesssim 2^{-j \frac{d^{2}-4d-3}{2d+2}} \|f_{j}\|_{L^{2}}.
\]

and getting the values for p and q such that

\[
\|S^{1}f_{j}\|_{L^{q}} \lesssim 2^{-j (p,q)} \|f_{j}\|_{L^{p}}.
\]

Bounds for $f \mapsto \sup_{1 \leq r \leq 2} |\mathcal{F}^{-1}((r|\xi|)\hat{\sigma}(r\xi)\hat{f})|$ follow from bounds for

$f \mapsto S^{1}g$, where $\hat{g}(\xi) = \hat{f}(\xi)|\xi|$.
Recall

$$\hat{\sigma}(\xi) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|}, \quad \sigma_r * f(x) = \sum_{\pm} \int_{\mathbb{R}^d} e^{2\pi i (\xi \cdot x \pm |\xi| r)} a_{\pm}(r \xi) \hat{f}(\xi) \, d\xi.$$
The local smoothing phenomenon

Recall

\[\hat{\sigma}(\xi) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|}, \quad \sigma_r * f(x) = \sum_{\pm} \int_{\mathbb{R}^d} e^{2\pi i (\xi \cdot x \pm |\xi| r)} a_{\pm}(r\xi) \hat{f}(\xi) \, d\xi. \]

Half-wave propagator

\[e^{it\sqrt{-\Delta}} f(x) := \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{it|\xi|} \hat{f}(\xi) \, d\xi. \]
The local smoothing phenomenon

Recall

\(\hat{\sigma}(\xi) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|} \), \hspace{1cm} \sigma_r * f(x) = \sum_{\pm} \int_{\mathbb{R}^d} e^{2\pi i (\xi \cdot x \pm |\xi| r)} a_{\pm}(r\xi) \hat{f}(\xi) \, d\xi.

Half-wave propagator

\(e^{it\sqrt{-\Delta}} f(x) := \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{it|\xi|} \hat{f}(\xi) \, d\xi. \)

For any fixed time \(t \) and any \(1 < p < \infty \), Peral (1980, also Miyachi) proved that

\[\| e^{it\sqrt{-\Delta}} f \|_{L^p_{-s_p}(\mathbb{R}^d)} \leq C_{t,p} \| f \|_{L^p(\mathbb{R}^d)} \]

for \(s_p := (d - 1)|1/2 - 1/p| \) and \(C_{t,p} \) locally bounded in \(t \).
The local smoothing phenomenon

Recall

$$\hat{\sigma}(\xi) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|}, \quad \sigma_r \ast f(x) = \sum_{\pm} \int_{\mathbb{R}^d} e^{2\pi i (\xi \cdot x \pm |\xi| r)} a_{\pm}(r\xi) \hat{f}(\xi) \, d\xi.$$

Half-wave propagator

$$e^{it\sqrt{-\Delta}} f(x) := \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{it|\xi|} \hat{f}(\xi) \, d\xi.$$

For any fixed time t and any $1 < p < \infty$, Peral (1980, also Miyachi) proved that

$$\| e^{it\sqrt{-\Delta}} f \|_{L^p_{-s_p}(\mathbb{R}^d)} \leq C_{t,p} \| f \|_{L^p(\mathbb{R}^d)}$$

for $s_p := (d - 1)|1/2 - 1/p|$ and $C_{t,p}$ locally bounded in t.

This is sharp: $L^p_{-s_p}$ cannot be replaced by L^p_{α} with $\alpha > -s_p$.

D. Beltran (BCAM)
The local smoothing phenomenon

Recall

\[\hat{\sigma}(\xi) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|}, \quad \sigma_r \ast f(x) = \sum_{\pm} \int_{\mathbb{R}^d} e^{2\pi i (\xi \cdot x \pm |\xi| r)} a_{\pm}(r \xi) \hat{f}(\xi) \, d\xi. \]

Half-wave propagator

\[e^{it\sqrt{-\Delta}} f(x) := \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{it |\xi|} \hat{f}(\xi) \, d\xi. \]

For any fixed time \(t \) and any \(1 < p < \infty \), Peral (1980, also Miyachi) proved that

\[\int_1^2 \| e^{it\sqrt{-\Delta}} f \|_{L^p_{-s_p}(\mathbb{R}^d)}^p \, dt \leq \int_1^2 C_{t,p}^p \, dt \| f \|_{L^p(\mathbb{R}^d)}^p \]

for \(s_p := (d - 1)|1/2 - 1/p| \) and \(C_{t,p} \) locally bounded in \(t \).

This is sharp: \(L^p_{-s_p} \) cannot be replaced by \(L^p_{\alpha} \) with \(\alpha > -s_p \).
The local smoothing phenomenon

Recall

\[\hat{\sigma}(\xi) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|}, \quad \sigma_r \ast f(x) = \sum_{\pm} \int_{\mathbb{R}^d} e^{2\pi i (\xi \cdot x \pm |\xi| r)} a_{\pm}(r \xi) \hat{f}(\xi) \, d\xi. \]

Half-wave propagator

\[e^{it\sqrt{-\Delta}} f(x) := \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{it|\xi|} \hat{f}(\xi) \, d\xi. \]

For any fixed time \(t \) and any \(1 < p < \infty \), Peral (1980, also Miyachi) proved that

\[\int_1^2 \left\| e^{it\sqrt{-\Delta}} f \right\|_{L_p^{-s_p}(\mathbb{R}^d)}^p \, dt \leq C_p \| f \|_{L_p(\mathbb{R}^d)}^p \]

for \(s_p := (d-1)|1/2 - 1/p| \) and \(C_{t,p} \) locally bounded in \(t \).

This is sharp: \(L_p^{-s_p} \) cannot be replaced by \(L_\alpha^p \) with \(\alpha > -s_p \).
The local smoothing phenomenon

Recall

\[\hat{\sigma}(\xi) = \sum_{\pm} a_{\pm}(\xi) e^{\pm 2\pi i |\xi|}, \quad \sigma_r * f(x) = \sum_{\pm} \int_{\mathbb{R}^d} e^{2\pi i (\xi \cdot x \pm |\xi| r)} a_{\pm}(r \xi) \hat{f}(\xi) \, d\xi. \]

Half-wave propagator

\[e^{it\sqrt{-\Delta}} f(x) := \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{it|\xi|} \hat{f}(\xi) \, d\xi. \]

For any fixed time \(t \) and any \(1 < p < \infty \), Peral (1980, also Miyachi) proved that

\[\int_1^2 \left\| e^{it\sqrt{-\Delta}} f \right\|_{L^p_{-s_p} + \sigma(p)}(\mathbb{R}^d) \, dt \leq C_p \left\| f \right\|_{L^p(\mathbb{R}^d)} \]

for \(s_p := (d - 1)|1/2 - 1/p| \) and \(C_{t,p} \) locally bounded in \(t \).

This is sharp: \(L^p_{-s_p} \) cannot be replaced by \(L^p_{\alpha} \) with \(\alpha > -s_p \).
State of the art for the local smoothing conjecture

- Mockenhoupt–Seeger–Sogge
- Wolff (d = 2)
- Wolff–Laba
- Garrigós–Seeger (–Schlag)
- Heo–Nazarov–Seeger (d ≥ 4)
- Bourgain–Demeter
- S. Lee–Vargas (d = 2)
- J. Lee (d = 2)

\[
\left(\int_1^2 \| e^{it\sqrt{-\Delta}} f \|_{L^p_{s - sp + \theta}}^p \, dt \right)^{1/p} \lesssim \| f \|_{L^p_s(\mathbb{R}^d)}
\]

holds for \(0 \leq \theta < \frac{1}{p} \) and \(s_p = (d - 1)\left(\frac{1}{2} - \frac{1}{p}\right) \) whenever \(p \geq \frac{2(d+1)}{d-1} \).

\[
\left(\int_1^2 \| e^{it\sqrt{-\Delta}} f \|_{L^p_{s-s_p+\theta}(\mathbb{R}^d)}^p \, dt \right)^{1/p} \lesssim \| f \|_{L^p_s(\mathbb{R}^d)}
\]

holds for \(0 \leq \theta < \frac{1}{p} \) and \(s_p = (d-1)\left(\frac{1}{2} - \frac{1}{p} \right) \) whenever \(p \geq \frac{2(d+1)}{d-1} \).

For frequency localised pieces it reads as

\[
\left(\int_1^2 \| e^{it\sqrt{-\Delta}} f_j \|_{L^p(\mathbb{R}^d)}^p \, dt \right)^{1/p} \lesssim 2^{j(s_p-\theta)} \| f \|_{L^p(\mathbb{R}^d)}.
\]

\[
\left(\int_1^2 \left\| e^{it\sqrt{-\Delta}} f \right\|^p_{L^{p}_{s-s_p+\theta}(\mathbb{R}^d)} dt \right)^{1/p} \lesssim \left\| f \right\|_{L^p_s(\mathbb{R}^d)}
\]

holds for \(0 \leq \theta < \frac{1}{p}\) and \(s_p = (d-1)(\frac{1}{2} - \frac{1}{p})\) whenever \(p \geq \frac{2(d+1)}{d-1}\).

For frequency localised pieces it reads as

\[
\left(\int_1^2 \left\| e^{it\sqrt{-\Delta}} f_j \right\|^p_{L^p(\mathbb{R}^d)} dt \right)^{1/p} \lesssim 2^{j(s_p-\theta)} \left\| f \right\|_{L^p(\mathbb{R}^d)}.
\]

Using this at \(p = d-1\) with the Sobolev embedding \(\left\| u \right\|_{L^\infty_t(\mathbb{R})} \lesssim \left\| (1+\sqrt{-\partial^2_t})^{s} u \right\|_{L^p_t(\mathbb{R})}\) for \(s > 1/p\), one has

\[
\left\| S^{\sim 1} g_j \right\|_{L^{d-1}} = \left\| \sup_{1 \leq t \leq 2} |\sigma_t \ast g_j| \right\|_{L^{d-1}} \lesssim \delta \ 2^{j(\delta-1)} \left\| g_j \right\|_{L^{d-1}} \lesssim 2^{j \delta} \left\| f_j \right\|_{L^{d-1}}
\]

for any \(\delta > 0\).
Endpoint Sobolev bounds for HL and $0 < \beta < 1$

For $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$, $1 < p \leq q < \infty$ and $0 \leq \beta < d$

$$\| \nabla M_\beta f \|_{L^q(\mathbb{R}^d)} \leq \| M_\beta |\nabla f| \|_{L^q(\mathbb{R}^d)} \leq \| \nabla f \|_{L^p(\mathbb{R}^d)}.$$
For $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$, $1 < p \leq q < \infty$ and $0 \leq \beta < d$

$$\| \nabla M_\beta f \|_{L^q(\mathbb{R}^d)} \leq \| M_\beta |\nabla f| \|_{L^q(\mathbb{R}^d)} \leq \| \nabla f \|_{L^p(\mathbb{R}^d)}.$$

What about $p = 1$?
Endpoint Sobolev bounds for HL and $0 < \beta < 1$

For $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$, $1 < p \leq q < \infty$ and $0 \leq \beta < d$

$$\| \nabla M_\beta f \|_{L^q(\mathbb{R}^d)} \leq \| M_\beta |\nabla f| \|_{L^q(\mathbb{R}^d)} \leq \| \nabla f \|_{L^p(\mathbb{R}^d)}.$$

What about $p = 1$? For $\beta \geq 1$,

$$\| \nabla M_\beta f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| M_{\beta-1} f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| f \|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \leq \| \nabla f \|_{L^1(\mathbb{R}^d)}.$$
Endpoint Sobolev bounds for HL and $0 < \beta < 1$

For $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$, $1 < p \leq q < \infty$ and $0 \leq \beta < d$

$$\| \nabla M_\beta f \|_{L^q(\mathbb{R}^d)} \leq \| M_\beta \nabla f \|_{L^q(\mathbb{R}^d)} \leq \| \nabla f \|_{L^p(\mathbb{R}^d)}.$$

What about $p = 1$? For $\beta \geq 1$,

$$\| \nabla M_\beta f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| M_{\beta-1} f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| f \|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \lesssim \| \nabla f \|_{L^1(\mathbb{R}^d)}.$$

But what about this for $0 < \beta < 1$?

- Carneiro–Madrid (2017): for $d = 1$, and non-centered \tilde{M}_β.

D. Beltran (BCAM)
Regularity of fractional maximal functions
Madison, May 19, 2019
Endpoint Sobolev bounds for HL and $0 < \beta < 1$

For $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$, $1 < p \leq q < \infty$ and $0 \leq \beta < d$

$$\|\nabla M_\beta f\|_{L^q(\mathbb{R}^d)} \leq \|M_\beta |\nabla f|\|_{L^q(\mathbb{R}^d)} \leq \|\nabla f\|_{L^p(\mathbb{R}^d)}.$$

What about $p = 1$? For $\beta \geq 1$,

$$\|\nabla M_\beta f\|_{L^{d-\beta}(\mathbb{R}^d)} \leq \|M_{\beta-1} f\|_{L^{d-\beta}(\mathbb{R}^d)} \leq \|f\|_{L^{d-1}(\mathbb{R}^d)} \approx \|\nabla f\|_{L^1(\mathbb{R}^d)}.$$

But what about this for $0 < \beta < 1$?

- Carneiro–Madrid (2017): for $d = 1$, and non-centered \tilde{M}_β.
- Luiro–Madrid (2017): for $d > 1$, non-centered \tilde{M}_β and radial functions.
Endpoint Sobolev bounds for HL and $0 < \beta < 1$

For $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{d}$, $1 < p \leq q < \infty$ and $0 \leq \beta < d$

$$\| \nabla M_{\beta} f \|_{L^q(\mathbb{R}^d)} \leq \| M_{\beta} |\nabla f| \|_{L^q(\mathbb{R}^d)} \leq \| \nabla f \|_{L^p(\mathbb{R}^d)}. $$

What about $p = 1$? For $\beta \geq 1$,

$$\| \nabla M_{\beta} f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| M_{\beta-1} f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| f \|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \leq \| \nabla f \|_{L^1(\mathbb{R}^d)}. $$

But what about this for $0 < \beta < 1$?

- Carneiro–Madrid (2017): for $d = 1$, and non-centered \tilde{M}_β.
- Luiro–Madrid (2017): for $d > 1$, non-centered \tilde{M}_β and radial functions.
- B.–Ramos–Saari (2018), for any $d > 1$, centered M_β, but supremum restricted to $r = 2^k$ and $k \in \mathbb{Z}$, or for maximal functions with smooth kernels,

$$M_{\beta}^\phi f(x) = \sup_{r>0} r^\beta |f| \ast r^{-d} \phi_{B(0,r)}(x).$$
Endpoint Sobolev bounds for “HL” and $0 < \beta < 1$

Inspired by the $\beta \geq 1$ case:

$$\|\nabla M_\beta f\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \|M_{\beta-1} f\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \|f\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \lesssim \|\nabla f\|_{L^1(\mathbb{R}^d)}.$$
Endpoint Sobolev bounds for “HL” and $0 < \beta < 1$

Inspired by the $\beta \geq 1$ case:

$$\| \nabla M_\beta f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| M_{\beta-1} f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| f \|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \approx \| \nabla f \|_{L^1(\mathbb{R}^d)}.$$

Using similar Fourier analytic arguments as before, one may observe

$$\| \nabla M_\beta^\sim f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \lesssim \| f \|_{\dot{B}^{1-\beta}_{d,d-\beta,1}(\mathbb{R}^d)} , \quad 0 < \beta < d/2 ,$$

where

$$\| f \|_{\dot{B}^s_{p,q}(\mathbb{R}^d)} : = \left(\sum_{j \in \mathbb{Z}} 2^{jsq} \| f_j \|_{L^p(\mathbb{R}^d)}^q \right)^{1/q} .$$
Inspired by the $\beta \geq 1$ case:

$$\left\| \nabla M_{\beta} f \right\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \left\| M_{\beta-1} f \right\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \left\| f \right\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \lesssim \left\| \nabla f \right\|_{L^1(\mathbb{R}^d)}.$$

Using similar Fourier analytic arguments as before, one may observe

$$\left\| \nabla M_{\beta}^{\sim} f \right\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \lesssim \left\| f \right\|_{\dot{B}^{1-\beta \frac{d}{d-\beta}, 1}_{\frac{d}{d-\beta}, \frac{d}{d-\beta}}(\mathbb{R}^d)}, \quad 0 < \beta < d/2,$$

where

$$\left\| f \right\|_{\dot{B}^{s}_{p, q}(\mathbb{R}^d)} := \left(\sum_{j \in \mathbb{Z}} 2^{jsq} \left\| f_j \right\|_{L^p(\mathbb{R}^d)}^q \right)^{1/q}.$$

This, “nearly” upgrades to the full supremum as

$$\left\| \nabla M_{\beta} f \right\|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \lesssim \left\| f \right\|_{\dot{B}^{1-\beta \frac{d}{d-\beta}, \frac{d}{d-\beta}}_{d-\beta, d-\beta}(\mathbb{R}^d)}.$$

(1)
Inspired by the $\beta \geq 1$ case:
\[
\| \nabla M_\beta f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| M_{\beta-1} f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \leq \| f \|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \lesssim \| \nabla f \|_{L^1(\mathbb{R}^d)}.
\]
Using similar Fourier analytic arguments as before, one may observe
\[
\| \nabla \tilde{M}_\beta^{-1} f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \lesssim \| f \|_{\dot{B}^{1-\beta}_{\frac{d}{d-\beta},1}(\mathbb{R}^d)}, \quad 0 < \beta < d/2,
\]
where
\[
\| f \|_{\dot{B}^s_{p,q}(\mathbb{R}^d)} := \left(\sum_{j \in \mathbb{Z}} 2^{jsq} \| f_j \|_{L^p(\mathbb{R}^d)}^q \right)^{1/q}.
\]
This, “nearly” upgrades to the full supremum as
\[
\| \nabla M_\beta f \|_{L^{\frac{d}{d-\beta}}(\mathbb{R}^d)} \lesssim \| f \|_{\dot{B}^{1-\beta}_{\frac{d}{d-\beta}+\frac{d}{d-\beta}}(\mathbb{R}^d)}. \tag{1}
\]
Compare (1) with the pointwise Kinnunen–Saksman estimate
\[
|\nabla M_\beta f(x)| \lesssim M_{\beta-1} f(x).
\]
Inspired by the $\beta \geq 1$ case:

$$
\| \nabla M_\beta f \|_{L^{d/(d-\beta)}(\mathbb{R}^d)} \leq \| M_{\beta-1} f \|_{L^{d/(d-\beta)}(\mathbb{R}^d)} \leq \| f \|_{L^{d/(d-1)}(\mathbb{R}^d)} \lesssim \| \nabla f \|_{L^1(\mathbb{R}^d)}.
$$

Using similar Fourier analytic arguments as before, one may observe

$$
\| \nabla \tilde{M}_\beta f \|_{L^{d/(d-\beta)}(\mathbb{R}^d)} \lesssim \| f \|_{\dot{B}^{1-\beta}_{d/(d-\beta),1}(\mathbb{R}^d)}, \quad 0 < \beta < d/2,
$$

where

$$
\| f \|_{\dot{B}^{s}_{p,q}(\mathbb{R}^d)} := \left(\sum_{j \in \mathbb{Z}} 2^{jsq} \| f_j \|_{L^p(\mathbb{R}^d)}^q \right)^{1/q}.
$$

This, “nearly” upgrades to the full supremum as

$$
\| \nabla \tilde{M}_\beta f \|_{L^{d/(d-\beta)}(\mathbb{R}^d)} \lesssim \| f \|_{\dot{B}^{1-\beta}_{d/(d-\beta),d/(d-\beta)}(\mathbb{R}^d)}. \quad (1)
$$
Endpoin Sobolev bounds for “HL” and $0 < \beta < 1$

Inspired by the $\beta \geq 1$ case:

$$\| \nabla M_\beta f \|_{L^{d-\beta} (\mathbb{R}^d)} \leq \| M_{\beta-1} f \|_{L^{d-\beta} (\mathbb{R}^d)} \leq \| f \|_{L^{d-1} (\mathbb{R}^d)} \leq \| \nabla f \|_{L^1 (\mathbb{R}^d)}.$$

Using similar Fourier analytic arguments as before, one may observe

$$\| \nabla M_\beta^{\sim} f \|_{L^{d-\beta} (\mathbb{R}^d)} \sim \| f \|_{\dot{B}^{1-\beta}_{d,\frac{d}{d-\beta},1} (\mathbb{R}^d)}, \quad 0 < \beta < d/2,$$

where

$$\| f \|_{\dot{B}^{s}_{p,q} (\mathbb{R}^d)} := \left(\sum_{j \in \mathbb{Z}} 2^{jsq} \| f_j \|_{L^p (\mathbb{R}^d)}^q \right)^{1/q}.$$

This, “nearly” upgrades to the full supremum as

$$\| \nabla M_\beta f \|_{L^{d-\beta} (\mathbb{R}^d)} \sim \| f \|_{\dot{B}^{1-\beta}_{d,\frac{d}{d-\beta},\frac{d}{d-\beta}} (\mathbb{R}^d)}. \quad (1)$$

$$\| f \|_{\dot{B}^{1-\beta}_{d,\frac{d}{d-\beta},\frac{d}{d-\beta}} (\mathbb{R}^d)} \leq \| \nabla f \|_{L^1 (\mathbb{R}^d)}, \quad 0 < \beta < d/2, \ d > 1.$$
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.

- Sublinearity not preserved by ∇.

The map

$$f \mapsto |\nabla Mf|$$

is not sublinear, so boundedness from $W^{1,p} \to L^q$ does not imply continuity.
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.
- Sublinearity not preserved by ∇.

 The map

 $$f \mapsto |\nabla Mf|$$

 is not sublinear, so boundedness from $W^{1,p} \to L^q$ does not imply continuity.
- Luiro (2008): non endpoint case for $M, \tilde{M}, M_\beta, \tilde{M}_\beta, S...$
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.

- Sublinearity not preserved by ∇.

- The map

$$f \mapsto |\nabla Mf|$$

is not sublinear, so boundedness from $W^{1,p} \to L^q$ does not imply continuity.

- Luiro (2008): non endpoint case for $M, \tilde{M}, M_\beta, \tilde{M}_\beta, S$...

Again, the main difficulty is at the endpoint $p = 1$:
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.

- Sublinearity not preserved by ∇.

 The map

 $$f \mapsto |\nabla Mf|$$

 is not sublinear, so boundedness from $W^{1,p} \to L^q$ does not imply continuity.

- Luiro (2008): non endpoint case for $M, \tilde{M}, M_\beta, \tilde{M}_\beta, S...$

Again, the main difficulty is at the endpoint $p = 1$:

- Carneiro–Madrid–Pierce (2017): $d = 1$ for \tilde{M}.

Luiro (2008) : non endpoint case for $M, \tilde{M}, M_\beta, \tilde{M}_\beta, S...$
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.
- Sublinearity not preserved by ∇.

The map

$$f \mapsto |\nabla Mf|$$

is not sublinear, so boundedness from $W^{1,p} \rightarrow L^q$ does not imply continuity.

- Luiro (2008): non endpoint case for $M, \tilde{M}, M_\beta, \tilde{M}_\beta, S$...

Again, the main difficulty is at the endpoint $p = 1$:

- Carneiro–Madrid–Pierce (2017): $d = 1$ for \tilde{M}.
- Madrid (2017): $d = 1$ for \tilde{M}_β.

Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.

- Sublinearity not preserved by ∇.

The map

$$f \mapsto |\nabla Mf|$$

is not sublinear, so boundedness from $W^{1,p} \to L^q$ does not imply continuity.

- Luiro (2008): non endpoint case for $M, \tilde{M}, M_\beta, \tilde{M}_\beta, S...$

Again, the main difficulty is at the endpoint $p = 1$:

- Carneiro–Madrid–Pierce (2017): $d = 1$ for \tilde{M}.

- Madrid (2017): $d = 1$ for \tilde{M}_β.

- B.–Madrid (2019): $d > 1$ for \tilde{M}_β for $\beta \geq 1$
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.

- Sublinearity not preserved by ∇.

 The map

 $$f \mapsto |\nabla Mf|$$

 is not sublinear, so boundedness from $W^{1,p} \to L^q$ does not imply continuity.

- Luiro (2008): non endpoint case for M, \tilde{M}, M_β, \tilde{M}_β, S...

Again, the main difficulty is at the endpoint $p = 1$:

- Carneiro–Madrid–Pierce (2017): $d = 1$ for \tilde{M}.

- Madrid (2017): $d = 1$ for \tilde{M}_β.

- B.–Madrid (2019): $d > 1$ for \tilde{M}_β for $\beta \geq 1$ and $0 < \beta < 1$ if f is radial
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.
- Sublinearity not preserved by ∇.

 The map

 $$f \mapsto |\nabla Mf|$$

 is not sublinear, so boundedness from $W^{1,p} \to L^q$ does not imply continuity.
- Luiro (2008): non endpoint case for M, \tilde{M}, M_β, \tilde{M}_β, S...

Again, the main difficulty is at the endpoint $p = 1$:

- Carneiro–Madrid–Pierce (2017): $d = 1$ for \tilde{M}.
- Madrid (2017): $d = 1$ for \tilde{M}_β.
- B.–Madrid (2019): $d > 1$ for \tilde{M}_β for $\beta \geq 1$ and $0 < \beta < 1$ if f is radial (where the boundedness is known).
Continuity

- M is sublinear: $M(f + g) \leq M(f) + M(g)$. Boundedness implies continuity.

- Sublinearity not preserved by ∇.

 The map
 \[
 f \leftrightarrow |\nabla Mf|
 \]
 is not sublinear, so boundedness from $W^{1,p} \rightarrow L^q$ does not imply continuity.

- Luiro (2008): non endpoint case for $M, \tilde{M}, M_\beta, \tilde{M}_\beta, S$...

Again, the main difficulty is at the endpoint $p = 1$:

- Carneiro–Madrid–Pierce (2017): $d = 1$ for \tilde{M}.

- Madrid (2017): $d = 1$ for \tilde{M}_β.

- B.–Madrid (2019): $d > 1$ for \tilde{M}_β for $\beta \geq 1$ and $0 < \beta < 1$ if f is radial (where the boundedness is known).

D. Beltran (BCAM)
Regularity of fractional maximal functions
Madison, May 19, 2019
Happy Birthday Andreas!