Estimates for the resolvent of the Laplacian

Sanghyuk Lee

Seoul National University
Madison Lectures in Fourier Analysis in honor of Andreas Seeger

May 16, 2019
Resolvent estimate for the Laplacian

• For a given an operator T the resolvent is formally given by

$$(T - zI)^{-1}, \; z \in \mathbb{C},$$

and used to understanding the spectrum of T.

• We consider $T = -\Delta$ on \mathbb{R}^d.

Applications to related problems:

▶ uniform Sobolev estimate
▶ unique continuation
▶ limiting absorption principle
▶ absolute continuity of the spectrum of the Schrödinger operators
▶ eigenvalue bounds for the Schrödinger operators
Resolvent estimate for the Laplacian

• For a given an operator T the resolvent is formally given by

$$(T - zI)^{-1}, \ z \in \mathbb{C},$$

and used to understanding the spectrum of T.

• We consider $T = -\Delta$ on \mathbb{R}^d. For $z \in \mathbb{C} \setminus [0, \infty)$

$$(-\Delta - z)^{-1} f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} \frac{1}{|\xi|^2 - z} \hat{f}(\xi) d\xi.$$
Resolvent estimate for the Laplacian

- For a given an operator T the resolvent is formally given by

 $$(T - zI)^{-1}, \ z \in \mathbb{C},$$

 and used to understanding the spectrum of T.

- We consider $T = -\Delta$ on \mathbb{R}^d. For $z \in \mathbb{C} \setminus [0, \infty)$

 $$(-\Delta - z)^{-1}f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} \frac{1}{|\xi|^2 - z} \hat{f}(\xi) d\xi.$$

- We are interested in the estimate with $C = C(z, p, q)$

 $$\|(-\Delta - z)^{-1}f\|_{L^q(\mathbb{R}^d)} \leq C \|f\|_{L^p(\mathbb{R}^d)}, \ \forall z \in \mathbb{C} \setminus [0, \infty).$$
Resolvent estimate for the Laplacian

- For a given an operator T the resolvent is formally given by

$$(T - zI)^{-1}, \ z \in \mathbb{C},$$

and used to understanding the spectrum of T.

- We consider $T = -\Delta$ on \mathbb{R}^d. For $z \in \mathbb{C} \setminus [0, \infty)$

$$(-\Delta - z)^{-1}f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} \frac{1}{|\xi|^2 - z} \hat{f}(\xi) d\xi.$$

- We are interested in the estimate with $C = C(z, p, q)$

$$\|(\Delta - z)^{-1}f\|_{L^q(\mathbb{R}^d)} \leq C\|f\|_{L^p(\mathbb{R}^d)}, \ \forall \ z \in \mathbb{C} \setminus [0, \infty).$$

- Applications to related problems:
 - uniform Sobolev estimate
 - unique continuation
 - limiting absorption principle
 - absolute continuity of the spectrum of the Schrödinger operators
 - eigenvalue bounds for the Schrödinger operators
Uniform Sobolev inequality

• For $1 \leq k \leq d$ let Q be the non-degenerate quadratic form given by

\[Q(\xi) = \xi_1^2 + \cdots + \xi_k^2 - \xi_{k+1}^2 - \cdots - \xi_d^2. \]

• For $a = (a_1, \ldots, a_j, \ldots) \in \mathbb{C}^d$ and $b \in \mathbb{C}$,
Uniform Sobolev inequality

• For $1 \leq k \leq d$ let Q be the non-degenerate quadratic form given by

$$Q(\xi) = \xi_1^2 + \cdots + \xi_k^2 - \xi_{k+1}^2 - \cdots - \xi_d^2.$$

• For $a = (a_1, \ldots, a_j, \ldots) \in \mathbb{C}^d$ and $b \in \mathbb{C}$, let P be a second order differential operator defined by

$$P(a, b, D) = Q(D) + a \cdot \nabla + b, \quad D = -i\nabla.$$
Uniform Sobolev inequality

- For \(1 \leq k \leq d\) let \(Q\) be the non-degenerate quadratic form given by
 \[
 Q(\xi) = \xi_1^2 + \cdots + \xi_k^2 - \xi_{k+1}^2 - \cdots - \xi_d^2.
 \]

- For \(a = (a_1, \ldots, a_j, \ldots) \in \mathbb{C}^d\) and \(b \in \mathbb{C}\), let \(P\) be a second order differential operator defined by
 \[
P(a, b, D) = Q(D) + a \cdot \nabla + b, \quad D = -i\nabla.
 \]

Theorem (Kenig-Ruiz-Sogge, ’87)

Let \(d \geq 3\) and \(Q(D) = -\Delta\). Then

\[
\|u\|_{L^q(\mathbb{R}^d)} \leq C\|P(a, b, D)u\|_{L^p(\mathbb{R}^d)}, \quad u \in S(\mathbb{R}^d)
\]

holds with \(C\) independent of \(a_j\) and \(b\) if and only if

\[
\frac{1}{p} - \frac{1}{q} = \frac{2}{d} \quad \text{and} \quad \frac{2d}{d + 3} < p < \frac{2d}{d + 1}.
\]
When $Q(D) \neq -\Delta$
When \(Q(D) \neq -\Delta \)

Theorem (Kenig-Ruiz-Sogge ’87, Bak-D.Oberlin-McMichael ’95, Jeong-Kwon-L. ’19)

Let \(d \geq 3 \) and \(Q(D) \neq -\Delta \). Then

\[
\| u \|_{L^q(\mathbb{R}^d)} \leq C \| P(a, b, D)u \|_{L^p(\mathbb{R}^d)}, \quad u \in S(\mathbb{R}^d)
\]

holds with \(C \) independent of \(a_j \) and \(b \) if and only if

\[
\frac{1}{p} - \frac{1}{q} = \frac{2}{d} \quad \text{and} \quad \frac{2d(d - 1)}{d^2 + 2d - 1} < p < \frac{2(d - 1)}{d}.
\]

Furthermore, if \(p = \frac{2(d-1)}{d} \) or \(\frac{2d(d-1)}{d^2+2d-1} \), we have

\[
\| u \|_{q, \infty} \leq C \| P(a, b, D)u \|_{p,1}.
\]
When $Q(D) \neq -\Delta$

Theorem (Kenig-Ruiz-Sogge '87, Bak-D.Oberlin-McMichael '95, Jeong-Kwon-L. '19)

Let $d \geq 3$ and $Q(D) \neq -\Delta$. Then

$$\|u\|_{L^q(\mathbb{R}^d)} \leq C \|P(a, b, D)u\|_{L^p(\mathbb{R}^d)}, \quad u \in S(\mathbb{R}^d)$$

holds with C independent of a_j and b if and only if

$$\frac{1}{p} - \frac{1}{q} = \frac{2}{d} \quad \text{and} \quad \frac{2d(d-1)}{d^2 + 2d - 1} < p < \frac{2(d-1)}{d}.$$

Furthermore, if $p = \frac{2(d-1)}{d}$ or $\frac{2d(d-1)}{d^2 + 2d - 1}$, we have $\|u\|_{q,\infty} \leq C \|P(a, b, D)u\|_{p,1}$.

- The range is smaller than that of the case $Q(D) = -\Delta$. This is due to the fact that the surface $\xi_1^2 + \cdots + \xi_k^2 - \xi_{k+1}^2 - \cdots - \xi_d^2 = 0$ has $d - 1$ non-vanishing principal curvatures.
Application

Corollary (Carleman estimate)

Let $d \geq 3$ and let p, q, and $P(a, b, D)$ be as in the above theorems, then we have

$$\|e^{-v \cdot x} u\|_{L^q(\mathbb{R}^d)} \leq C \|e^{-v \cdot x} P(a, b, D) u\|_{L^p(\mathbb{R}^d)},$$

where C is independent of vectors $v \in \mathbb{R}^d$, and $a_j, b \in \mathbb{C}$.

• Replacing u with $e^{-v \cdot x} u$, the estimate is equivalent to

$$\|u\|_{L^q(\mathbb{R}^d)} \leq C \|P(a, b, D+i v) u\|_{L^p(\mathbb{R}^d)},$$

$u \in S(\mathbb{R}^d)$.

• The estimates have applications to unique continuation property.

Corollary (Unique continuation)

Let p and let $P(a, b, D)$ be as in the above theorem and $V \in L^d/2(\mathbb{R}^d)$. Suppose $u \in W^{2, p}(\mathbb{R}^d)$, u is supported in a half space, and $|P(a, b, D) u| \leq |V u|$. Then $u = 0$ on the whole space \mathbb{R}^d.

Sanghyuk Lee (Seoul National University Madison Lectures in Fourier Analysis in honor of Andreas Seeger)
Corollary (Carleman estimate)

Let \(d \geq 3 \) and let \(p, q, \) and \(P(a, b, D) \) be as in the above theorems, then we have

\[
\| e^{\mathbf{v} \cdot \mathbf{x}} u \|_{L^q(\mathbb{R}^d)} \leq C \| e^{\mathbf{v} \cdot \mathbf{x}} P(a, b, D) u \|_{L^p(\mathbb{R}^d)}, \quad u \in S(\mathbb{R}^d),
\]

where \(C \) is independent of vectors \(\mathbf{v} \in \mathbb{R}^d, \) and \(a_j, b \in \mathbb{C}. \)
Application

Corollary (Carleman estimate)

Let \(d \geq 3 \) and let \(p, q, \) and \(P(\mathbf{a}, b, D) \) be as in the above theorems, then we have

\[
\| e^{\mathbf{v} \cdot \mathbf{x}} u \|_{L^q(\mathbb{R}^d)} \leq C \| e^{\mathbf{v} \cdot \mathbf{x}} P(\mathbf{a}, b, D) u \|_{L^p(\mathbb{R}^d)}, \quad u \in S(\mathbb{R}^d),
\]

where \(C \) is independent of vectors \(\mathbf{v} \in \mathbb{R}^d, \) and \(a_j, b \in \mathbb{C}. \)

- Replacing \(u \) with \(e^{-\mathbf{v} \cdot \mathbf{x}} u, \) the estimate is equivalent to

\[
\| u \|_{L^q(\mathbb{R}^d)} \leq C \| P(\mathbf{a}, b, D + i\mathbf{v}) u \|_{L^p(\mathbb{R}^d)}, \quad u \in S(\mathbb{R}^d).
\]
Corollary (Carleman estimate)

Let $d \geq 3$ and let $p, q, \text{ and } P(a, b, D)$ be as in the above theorems, then we have

$$\|e^{v \cdot x} u\|_{L^q(\mathbb{R}^d)} \leq C \|e^{v \cdot x} P(a, b, D)u\|_{L^p(\mathbb{R}^d)}, \quad u \in S(\mathbb{R}^d),$$

where C is independent of vectors $v \in \mathbb{R}^d$, and $a_j, b \in \mathbb{C}$.

- Replacing u with $e^{-v \cdot x} u$, the estimate is equivalent to

$$\|u\|_{L^q(\mathbb{R}^d)} \leq C \|P(a, b, D + iv)u\|_{L^p(\mathbb{R}^d)}, \quad u \in S(\mathbb{R}^d).$$

- The estimates have applications to unique continuation property.

Corollary (Unique continuation)

Let p and let $P(a, b, D)$ be as in the above theorem and $V \in L^{d/2}(\mathbb{R}^d)$. Suppose $u \in W^{2,p}(\mathbb{R}^d)$, u is supported in a half space, and $|P(a, b, D)u| \leq |Vu|$. Then $u = 0$ on the whole space \mathbb{R}^d.
Connection to restriction estimate
Connection to restriction estimate

In particular with $a = 0$ and $b = z$, the uniform estimate equals

$$
\|(Q(D) - z)^{-1}u\|_{L^q(\mathbb{R}^d)} \leq C\|u\|_{L^p(\mathbb{R}^d)}.
$$
Connection to restriction estimate

• In particular with $a = 0$ and $b = z$, the uniform estimate equals

$$\|(Q(D) - z)^{-1}u\|_{L^q(\mathbb{R}^d)} \leq C\|u\|_{L^p(\mathbb{R}^d)}.$$

• Taking $z = s \pm i\epsilon$, $s, \epsilon > 0$,

$$\frac{1}{Q(\xi) - s - i\epsilon} - \frac{1}{Q(\xi) - s + i\epsilon} = \frac{2i\epsilon}{(Q(\xi) - s)^2 + \epsilon^2} \rightarrow 2\pi i \delta(Q(\xi) - s)$$

as $\epsilon \rightarrow 0$ in the sense of distribution.
Connection to restriction estimate

• In particular with $a = 0$ and $b = z$, the uniform estimate equals

 $$\| (Q(D) - z)^{-1} u \|_{L^q(\mathbb{R}^d)} \leq C \| u \|_{L^p(\mathbb{R}^d)}.$$

• Taking $z = s \pm i\epsilon$, $s, \epsilon > 0$,

 $$\frac{1}{Q(\xi) - s - i\epsilon} - \frac{1}{Q(\xi) - s + i\epsilon} = \frac{2i\epsilon}{(Q(\xi) - s)^2 + \epsilon^2}$$

 $$\to 2\pi i \delta(Q(\xi) - s)$$

as $\epsilon \to 0$ in the sense of distribution.

• Uniform Sobolev inequality \Rightarrow restriction-extension estimate (to and from) the surface $\{\xi : Q(\xi) = s\}$:
Connection to restriction estimate

- In particular with \(a = 0 \) and \(b = z \), the uniform estimate equals

\[
\| (Q(D) - z)^{-1} u \|_{L^q(\mathbb{R}^d)} \leq C \| u \|_{L^p(\mathbb{R}^d)}.
\]

- Taking \(z = s \pm i\epsilon, \ s, \epsilon > 0 \),

\[
\frac{1}{Q(\xi) - s - i\epsilon} - \frac{1}{Q(\xi) - s + i\epsilon} = \frac{2i\epsilon}{(Q(\xi) - s)^2 + \epsilon^2}
\]

\[
\to 2\pi i \delta(Q(\xi) - s)
\]

as \(\epsilon \to 0 \) in the sense of distribution.

- Uniform Sobolev inequality \(\Rightarrow \) restriction-extension estimate (to and from) the surface \(\{ \xi : Q(\xi) = s \} \):

\[
\| \int \delta(Q(\xi) - s)e^{2\pi ix \cdot \xi} \hat{f}(\xi) d\xi \|_{L^q(\mathbb{R}^d)} \leq C \| f \|_{L^p(\mathbb{R}^d)}, \quad \forall f \in S(\mathbb{R}^d).
\]
Connection to restriction estimate

- In particular with \(a = 0 \) and \(b = z \), the uniform estimate equals
 \[
 \| (Q(D) - z)^{-1} u \|_{L^q(\mathbb{R}^d)} \leq C \| u \|_{L^p(\mathbb{R}^d)}.
 \]

- Taking \(z = s \pm i\epsilon, \ s, \epsilon > 0, \)
 \[
 \frac{1}{Q(\xi) - s - i\epsilon} - \frac{1}{Q(\xi) - s + i\epsilon} = \frac{2i\epsilon}{(Q(\xi) - s)^2 + \epsilon^2}
 \]
 \[
 \rightarrow 2\pi i \delta(Q(\xi) - s)
 \]
as \(\epsilon \to 0 \) in the sense of distribution.

- Uniform Sobolev inequality \(\Rightarrow\) restriction-extension estimate (to and from) the surface \(\{ \xi : Q(\xi) = s \} \):
 \[
 \| \int \delta(Q(\xi) - s)e^{2\pi ix \cdot \xi} \hat{f}(\xi) d\xi \|_{L^q(\mathbb{R}^d)} \leq C \| f \|_{L^p(\mathbb{R}^d)}, \ \forall f \in \mathcal{S}(\mathbb{R}^d).
 \]

- When \(q = p' \), the estimates were typically shown by imbedding the operator in a suitable analytic family of operators.
Back to the resolvent of the Laplacian

• For \(z \in \mathbb{C} \setminus [0, \infty) \) let us set

\[
\|(−Δ − z)^{-1}\|_{p→q} := \inf \left\{ B : \|(-Δ − z)^{-1}f\|_{L^q(\mathbb{R}^d)} \leq B\|f\|_{L^p(\mathbb{R}^d)}, \forall f \in \mathcal{S}(\mathbb{R}^d) \right\}.
\]
Back to the resolvent of the Laplacian

• For $z \in \mathbb{C} \setminus [0, \infty)$ let us set

$$ \|(−Δ − z)^{-1}\|_{p→q} := \inf \left\{ B : \|(−Δ − z)^{-1}f\|_{L^q(\mathbb{R}^d)} \leq B\|f\|_{L^p(\mathbb{R}^d)}, \forall f \in S(\mathbb{R}^d) \right\}. $$

• **Goal:** Find the precise value of $\|(−Δ − z)^{-1}\|_{p→q}$ up to a multiplicative constant.
For $z \in \mathbb{C} \setminus [0, \infty)$ let us set

$$\|(-\Delta - z)^{-1}\|_{p \to q} := \inf \left\{ B : \|(-\Delta - z)^{-1}f\|_{L^q(\mathbb{R}^d)} \leq B\|f\|_{L^p(\mathbb{R}^d)}, \forall f \in S(\mathbb{R}^d) \right\}.$$

Goal: Find the precise value of $\|(-\Delta - z)^{-1}\|_{p \to q}$ up to a multiplicative constant. In other words, we want to find $\mathcal{K} : \mathbb{C} \setminus [0, \infty) \to [0, \infty)$ such that

$$C^{-1}\mathcal{K}(z) \leq \|(-\Delta - z)^{-1}\|_{p \to q} \leq C\mathcal{K}(z).$$
Back to the resolvent of the Laplacian

- For $z \in \mathbb{C} \setminus [0, \infty)$ let us set
 $\|(−\Delta − z)^{-1}\|_{p→q} := \inf \left\{ B : \| (−\Delta − z)^{-1} f \|_{L^q(\mathbb{R}^d)} \leq B \| f \|_{L^p(\mathbb{R}^d)}, \forall f \in S(\mathbb{R}^d) \right\}$.

 - **Goal:** Find the precise value of $\|(−\Delta − z)^{-1}\|_{p→q}$ up to a multiplicative constant. In other words, we want to find $\mathcal{K} : \mathbb{C} \setminus [0, \infty) \to [0, \infty)$ such that

 $$C^{-1} \mathcal{K}(z) \leq \|(−\Delta − z)^{-1}\|_{p→q} \leq C \mathcal{K}(z).$$

 - Thanks to homogeneity (and scaling $\xi \to |z|\xi$),

 $$\|(−\Delta − z)^{-1}\|_{p→q} = |z|^{-1+\frac{d}{2}(\frac{1}{p}−\frac{1}{q})} \left\| \left(−\Delta − \frac{Z}{|Z|} \right)^{-1} \right\|_{p→q}, \forall z \in \mathbb{C} \setminus [0, \infty).$$
Back to the resolvent of the Laplacian

• For $z \in \mathbb{C} \setminus [0, \infty)$ let us set
 \[
 \|(-\Delta - z)^{-1}\|_{p \to q} := \inf \left\{ B : \|(-\Delta - z)^{-1}f\|_{L^q(\mathbb{R}^d)} \leq B\|f\|_{L^p(\mathbb{R}^d)}, \; \forall f \in \mathcal{S}(\mathbb{R}^d) \right\}.
 \]

• **Goal:** Find the precise value of $\|(-\Delta - z)^{-1}\|_{p \to q}$ up to a multiplicative constant. In other words, we want to find $\mathcal{K} : \mathbb{C} \setminus [0, \infty) \to [0, \infty)$ such that
 \[
 C^{-1}\mathcal{K}(z) \leq \|(-\Delta - z)^{-1}\|_{p \to q} \leq C\mathcal{K}(z).
 \]

• Thanks to homogeneity (and scaling $\xi \rightarrow |z|\xi$),
 \[
 \|(-\Delta - z)^{-1}\|_{p \to q} = |z|^{-1 + \frac{d}{2}(\frac{1}{p} - \frac{1}{q})}\left\|\left(-\Delta - \frac{z}{|z|}\right)^{-1}\right\|_{p \to q}, \quad \forall z \in \mathbb{C} \setminus [0, \infty).
 \]

• Enough to consider
 \[
 \|(-\Delta - z)^{-1}\|_{p \to q}, \quad z \in S^1 \setminus \{1\}.
 \]
Back to the resolvent of the Laplacian

• For \(z \in \mathbb{C} \setminus [0, \infty) \) let us set

\[
\| (−\Delta − z)^{-1} \|_{p\to q} := \inf \left\{ B : \| (−\Delta − z)^{-1} f \|_{L^q(\mathbb{R}^d)} \leq B \| f \|_{L^p(\mathbb{R}^d)}, \ \forall f \in S(\mathbb{R}^d) \right\}.
\]

• **Goal:** Find the precise value of \(\| (−\Delta − z)^{-1} \|_{p\to q} \) up to a multiplicative constant. In other words, we want to find \(\mathcal{K} : \mathbb{C} \setminus [0, \infty) \to [0, \infty) \) such that

\[
C^{-1} \mathcal{K}(z) \leq \| (−\Delta − z)^{-1} \|_{p\to q} \leq C \mathcal{K}(z).
\]

• Thanks to homogeneity (and scaling \(\xi \to |z|\xi \)),

\[
\| (−\Delta − z)^{-1} \|_{p\to q} = |z|^{−1+\frac{d}{2}(\frac{1}{p}−\frac{1}{q})} \| (−\Delta − \frac{z}{|z|})^{-1} \|_{p\to q}, \ \forall z \in \mathbb{C} \setminus [0, \infty).
\]

• Enough to consider

\[
\| (−\Delta − z)^{-1} \|_{p\to q}, \ z \in S^1 \setminus \{1\}.
\]
Uniformly boundedness range with $z \in S^1 \setminus \{1\}$

Theorem (Kenig-Ruiz-Sogge '87, Gutiérrez '04)

Let $d \geq 2$, $1 \leq p, q \leq \infty$, $z \in S^1 \setminus \{1\}$. Then $\|(-\Delta - z)^{-1}\|_{p \to q} \leq C$ holds with C independent of z if and only if

$$\left(\frac{1}{p}, \frac{1}{q}\right) \in \mathcal{R}_1(d).$$
Uniformly boundedness range with $z \in \mathbb{S}^1 \setminus \{1\}$

Theorem (Kenig-Ruiz-Sogge ’87, Gutiérrez ’04)

Let $d \geq 2$, $1 \leq p, q \leq \infty$, $z \in \mathbb{S}^1 \setminus \{1\}$. Then $\|(-\Delta - z)^{-1}\|_{p \to q} \leq C$ holds with C independent of z if and only if

$$\left(\frac{1}{p}, \frac{1}{q}\right) \in \mathcal{R}_1(d).$$

$$\mathcal{R}_1(d) := \left\{ (a, b) \in [0, 1]^2 : \frac{2}{d+1} \leq a - b \leq \frac{2}{d}, \ a > \frac{d+1}{2d}, \ b < \frac{d-1}{2d} \right\}.$$
Uniformly boundedness range with $z \in S^1 \setminus \{1\}$

Theorem (Kenig-Ruiz-Sogge ’87, Gutiérrez ’04)

Let $d \geq 2$, $1 \leq p, q \leq \infty$, $z \in S^1 \setminus \{1\}$. Then $\|(-\Delta - z)^{-1}\|_{p \to q} \leq C$ holds with C independent of z if and only if

$$\left(\frac{1}{p}, \frac{1}{q}\right) \in \mathcal{R}_1(d).$$

$$\mathcal{R}_1(d) := \left\{ (a, b) \in [0, 1]^2 : \frac{2}{d+1} \leq a - b \leq \frac{2}{d}, \ a > \frac{d+1}{2d}, \ b < \frac{d-1}{2d} \right\}.$$

- $L^{p,1}-L^{q,\infty}$ estimate (restricted weak type) holds if $(1/p, 1/q)$ is either

$$B(d) := \left(\frac{d+1}{2d}, \frac{(d-1)^2}{2d(d+1)}\right), \text{ or } B'(d) := \left(\frac{d^2 + 4d - 1}{2d(d+1)}, \frac{d-1}{2d}\right).$$
Uniformly boundedness range with \(z \in S^1 \setminus \{1\} \)

Theorem (Kenig-Ruiz-Sogge '87, Gutiérrez '04)

Let \(d \geq 2, 1 \leq p, q \leq \infty, z \in S^1 \setminus \{1\} \).

Then \(\|(-\Delta - z)^{-1}\|_{p \to q} \leq C \) holds with \(C \) independent of \(z \) if and only if

\[
\left(\frac{1}{p}, \frac{1}{q} \right) \in \mathcal{R}_1(d).
\]

\[\mathcal{R}_1(d) := \left\{ (a, b) \in [0, 1]^2 : \frac{2}{d+1} \leq a - b \leq \frac{2}{d}, a > \frac{d+1}{2d}, b < \frac{d-1}{2d} \right\}.\]

- \(L^{p,1} - L^{q,\infty} \) estimate (restricted weak type) holds if \((1/p, 1/q) \) is either

\[B(d) := \left(\frac{d+1}{2d}, \frac{(d-1)^2}{2d(d+1)} \right), \text{ or } B'(d) := \left(\frac{d^2+4d-1}{2d(d+1)}, \frac{d-1}{2d} \right). \]

- Failure for \((1/p, 1/q) \notin \mathcal{R}_1 \) was already known in the study of the Bochner–Riesz operators of negative orders.
Uniformly boundedness range with $z \in S^1 \setminus \{1\}$

Theorem (Kenig-Ruiz-Sogge ’87, Gutiérrez ’04)

Let $d \geq 2$, $1 \leq p, q \leq \infty$, $z \in S^1 \setminus \{1\}$. Then $\|(-\Delta - z)^{-1}\|_{p \to q} \leq C$ holds with C independent of z if and only if

$$\left(\frac{1}{p}, \frac{1}{q}\right) \in \mathcal{R}_1(d).$$

$$\mathcal{R}_1(d) := \left\{ (a, b) \in [0, 1]^2 : \frac{2}{d+1} \leq a - b \leq \frac{2}{d}, \ a > \frac{d+1}{2d}, \ b < \frac{d-1}{2d} \right\}.$$

- $L^{p,1-\infty}$ estimate (restricted weak type) holds if $(1/p, 1/q)$ is either

$$B(d) := \left(\frac{d+1}{2d}, \frac{(d-1)^2}{2d(d+1)} \right), \text{ or } \quad B'(d) := \left(\frac{d^2+4d-1}{2d(d+1)}, \frac{d-1}{2d} \right).$$

- Failure for $(1/p, 1/q) \notin \mathcal{R}_1$ was already known in the study of the Bochner–Riesz operators of negative orders.
Uniformly boundedness range with $z \in S^1 \setminus \{1\}$

Theorem (Kenig-Ruiz-Sogge ’87, Gutiérrez ’04)

Let $d \geq 2$, $1 \leq p, q \leq \infty$, $z \in S^1 \setminus \{1\}$.

Then $\|(-\Delta - z)^{-1}\|_{p \to q} \leq C$ holds with C independent of z if and only if

$$\left(\frac{1}{p}, \frac{1}{q}\right) \in \mathcal{R}_1(d).$$

$$\mathcal{R}_1(d) := \left\{(a, b) \in [0, 1]^2 : \frac{2}{d+1} \leq a - b \leq \frac{2}{d}, \ a > \frac{d+1}{2d}, \ b < \frac{d-1}{2d}\right\}.$$

- $L^{p,1-L^{q,\infty}}$ estimate (restricted weak type) holds if $(1/p, 1/q)$ is either

$$B(d) := \left(\frac{d+1}{2d}, \frac{(d-1)^2}{2d(d+1)}\right), \text{ or } \quad B'(d) := \left(\frac{d^2 + 4d - 1}{2d(d+1)}, \frac{d-1}{2d}\right).$$

- Failure for $(1/p, 1/q) \notin \mathcal{R}_1$ was already known in the study of the Bochner–Riesz operators of negative orders.
Admissible range of p, q

Proposition (Basic region)

Let $d \geq 2$, $z \in \mathbb{C} \setminus [0, \infty)$, and $1 \leq p, q \leq \infty$. Then $\|(-\Delta - z)^{-1}\|_{p \to q} < \infty$
Admissible range of p, q

Proposition (Basic region)

Let $d \geq 2$, $z \in \mathbb{C} \setminus [0, \infty)$, and $1 \leq p, q \leq \infty$. Then $\|(-\Delta - z)^{-1}\|_{p \rightarrow q} < \infty$ if and only if $(1/p, 1/q)$ is contained in

$$\mathcal{R}_0(d) := \begin{cases}
\{(a, b) \in [0, 1]^2 : 0 \leq a - b < 1\} & \text{if } d = 2, \\
\{(a, b) \in [0, 1]^2 : 0 \leq a - b \leq \frac{2}{d}\} \setminus \{(1, \frac{d-2}{d}), (\frac{2}{d}, 0)\} & \text{if } d \geq 3.
\end{cases}$$
Admissible range of p, q

Proposition (Basic region)

Let $d \geq 2$, $z \in \mathbb{C} \setminus [0, \infty)$, and $1 \leq p, q \leq \infty$. Then $\|(-\Delta - z)^{-1}\|_{p \to q} < \infty$ if and only if $(1/p, 1/q)$ is contained in

$$R_0(d) := \begin{cases}
(a, b) \in [0, 1]^2 : 0 \leq a - b < 1 & \text{if } d = 2, \\
(a, b) \in [0, 1]^2 : 0 \leq a - b \leq \frac{2}{d} & \text{if } d \geq 3.
\end{cases}$$

- Behaves like the fractional integration operator. In fact,

$$\partial_x^\alpha ((|\xi|^2 - z)^{-1} |\xi|^2) = O(|\xi|^{-|\alpha|}).$$

- If $p \neq 1$ and $q \neq \infty$ and $0 \leq 1/p - 1/q \leq 2/d$, by the Mikhlin’s multiplier theorem and the Hardy-Littlewood-Sobolev inequality.

- If $p = 1$ or $q = \infty$, handled differently.
Look at the multiplier

• For a given bounded measurable function m we define

$$m(D)f = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} m(\xi)\hat{f}(\xi)e^{ix\cdot\xi} d\xi.$$
Look at the multiplier

• For a given bounded measurable function m we define

$$m(D)f = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} m(\xi)\hat{f}(\xi)e^{ix\cdot\xi} \, d\xi.$$

• With $z = a + bi \in \mathbb{S} \setminus \{1\}$,

$$\mathcal{R}^z(\xi) := \frac{1}{|\xi|^2 - z} = \frac{|\xi|^2 - a + ib}{(|\xi|^2 - a)^2 + b^2}.$$

Natural to expect that the bound gets worse as $|b| \to 0$.

Sanghyuk Lee (Seoul National University Madison)
Estimates for the resolvent of the Laplacian
May 16, 2019 10 / 31
Look at the multiplier

- For a given bounded measurable function m we define
 \[m(D)f = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} m(\xi)\hat{f}(\xi)e^{ix\cdot\xi} \, d\xi. \]

- With $z = a + bi \in \mathbb{S} \setminus \{1\}$,
 \[\mathcal{R}^z(\xi) := \frac{1}{|\xi|^2 - z} = \frac{|\xi|^2 - a + ib}{(|\xi|^2 - a)^2 + b^2}. \]

- If $|b| > \delta_0 > 0$ or $|b| \leq \delta_0$ and $a < 0$, \mathcal{R}^z is smooth multiplier near the origin and behaves like $|\xi|^{-2}$ at infinity.
Look at the multiplier

• For a given bounded measurable function m we define

$$m(D)f = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} m(\xi)\hat{f}(\xi)e^{ix\cdot\xi} d\xi.$$

• With $z = a + bi \in \mathbb{S} \setminus \{1\}$,

$$\mathcal{R}^z(\xi) := \frac{1}{|\xi|^2 - z} = \frac{|\xi|^2 - a + ib}{(|\xi|^2 - a)^2 + b^2}.$$

• If $|b| > \delta_0 > 0$ or $|b| \leq \delta_0$ and $a < 0$, \mathcal{R}^z is smooth multiplier near the origin and behaves like $|\xi|^{-2}$ at infinity. For all $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{R}_0(d)$ and with C independent of z

$$\|(−\Delta - z)^{-1}\|_{p\to q} = \|\mathcal{R}^z(D)\|_{p\to q} \leq C.$$
Look at the multiplier

• For a given bounded measurable function m we define

$$m(D)f = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} m(\xi) \hat{f}(\xi) e^{ix \cdot \xi} d\xi.$$

• With $z = a + bi \in \mathbb{S} \setminus \{1\}$,

$$\mathcal{R}^z(\xi) := \frac{1}{|\xi|^2 - z} = \frac{|\xi|^2 - a + ib}{(|\xi|^2 - a)^2 + b^2}.$$

• If $|b| > \delta_\circ > 0$ or $|b| \leq \delta_\circ$ and $a < 0$, \mathcal{R}^z is smooth multiplier near the origin and behaves like $|\xi|^{-2}$ at infinity. For all $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{R}_0(d)$ and with C independent of z

$$\|(\Delta - z)^{-1}\|_{p \rightarrow q} = \|\mathcal{R}^z(D)\|_{p \rightarrow q} \leq C.$$

• So, we may assume $a \sim 1$, $0 < |b| < \delta_\circ$, equivalently $|z - 1| \lesssim \delta_\circ$.
Look at the multiplier
• For a given bounded measurable function m we define

$$m(D)f = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} m(\xi)\hat{f}(\xi)e^{ix\cdot\xi}d\xi.$$

• With $z = a + bi \in \mathbb{S} \setminus \{1\}$,

$$R^z(\xi) := \frac{1}{|\xi|^2 - z} = \frac{|\xi|^2 - a + ib}{(|\xi|^2 - a)^2 + b^2}.$$

• If $|b| > \delta\circ > 0$ or $|b| \leq \delta\circ$ and $a < 0$, R^z is smooth multiplier near the origin and behaves like $|\xi|^{-2}$ at infinity. For all $(\frac{1}{p}, \frac{1}{q}) \in R_0(d)$ and with C independent of z

$$\|(-\Delta - z)^{-1}\|_{p\to q} = \|R^z(D)\|_{p\to q} \leq C.$$

• So, we may assume $a \sim 1$, $0 < |b| < \delta\circ$, equivalently $|z - 1| \lesssim \delta\circ$.

• As $b \to 0$ R^z becomes singular and in the sense of distribution

$$\lim_{b \to 0} R^z(\xi) = P.V. \frac{1}{|\xi|^2 - 1} + 2\pi i\delta(|\xi|^2 - 1).$$
Look at the multiplier

• For a given bounded measurable function m we define

$$m(D)f = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} m(\xi) \hat{f}(\xi) e^{ix \cdot \xi} d\xi.$$

• With $z = a + bi \in \mathbb{S} \setminus \{1\}$,

$$\mathcal{R}^z(\xi) := \frac{1}{|\xi|^2 - z} = \frac{|\xi|^2 - a + ib}{(|\xi|^2 - a)^2 + b^2}.$$

• If $|b| > \delta_0 > 0$ or $|b| \leq \delta_0$ and $a < 0$, \mathcal{R}^z is smooth multiplier near the origin and behaves like $|\xi|^{-2}$ at infinity. For all $\left(\frac{1}{p}, \frac{1}{q}\right) \in \mathcal{R}_0(d)$ and with C independent of z

$$\|(-\Delta - z)^{-1}\|_{p \to q} = \|\mathcal{R}^z(D)\|_{p \to q} \leq C.$$

• So, we may assume $a \sim 1$, $0 < |b| < \delta_0$, equivalently $|z - 1| \lesssim \delta_0$.

• As $b \to 0$ \mathcal{R}^z becomes singular and in the sense of distribution

$$\lim_{b \to 0} \mathcal{R}^z(\xi) = P.V. \frac{1}{|\xi|^2 - 1} + 2\pi i \delta(|\xi|^2 - 1).$$

• Natural to expect that the bound gets worse as $|b| \to 0$.

Sanghyuk Lee (Seoul National University Madison) Estimates for the resolvent of the Laplacian May 16, 2019 10 / 31
Proposition

Let $d \geq 2$, $z \in S^1 \setminus \{1\}$, and $1 \leq p, q \leq \infty$. Then

$$\|(-\Delta - z)^{-1}\|_{p \to q} \gtrsim \text{dist}(z, [0, \infty))^{-\gamma(p,q)},$$
Lower bounds

Proposition

Let $d \geq 2$, $z \in S^1 \setminus \{1\}$, and $1 \leq p, q \leq \infty$. Then

$$\|(−Δ − z)^{−1}\|_{p→q} \gtrsim \text{dist}(z, [0, \infty))^{−\gamma(p,q)},$$

where

$$\gamma(p, q) := \max \left\{ 0, 1 − \frac{d + 1}{2} \left(\frac{1}{p} − \frac{1}{q} \right), \frac{d + 1}{2} − \frac{d}{p}, \frac{d}{q} − \frac{d − 1}{2} \right\}.$$

- Since $\|\mathcal{R}^z(D)\|_{p→q} = \|\mathcal{R}^z(D)\|_{p→q}$, $\|(\mathcal{R}^z ± \overline{\mathcal{R}^z})(D)\|_{p→q} \leq 2\|\mathcal{R}^z(D)\|_{p→q}$.
Lower bounds

Proposition

Let $d \geq 2$, $z \in S^1 \setminus \{1\}$, and $1 \leq p, q \leq \infty$. Then

$$\|(-\Delta - z)^{-1}\|_{p \to q} \gtrsim \text{dist}(z, [0, \infty))^{-\gamma(p, q)},$$

where

$$\gamma(p, q) := \max \left\{ 0, 1 - \frac{d + 1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \frac{d + 1}{2} - \frac{d}{p}, \frac{d}{q} - \frac{d - 1}{2} \right\}.$$

- Since $\|\mathcal{R}^z(D)\|_{p \to q} = \|\overline{\mathcal{R}^z(D)}\|_{p \to q}$, $\|(\mathcal{R}^z \pm \overline{\mathcal{R}^z})(D)\|_{p \to q} \leq 2\|\mathcal{R}^z(D)\|_{p \to q}$.
- We may work with the imaginary part

$$\frac{1}{2i} \left(\mathcal{R}^z - \overline{\mathcal{R}^z} \right) = \frac{b}{(|\xi|^2 - a)^2 + b^2}.$$
• Taking $0 < b \ll 1$ and $a = 1$, we need to show $\exists f$ (depending on b, p, q) such that

$$
\left\| \mathcal{F}^{-1}\left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2}\right)\right\|_q \gtrsim \max \left\{ 1, b^{-1 + \frac{d+1}{2}} \left(\frac{1}{p} - \frac{1}{q}\right), b^{\frac{d-1}{2}} - \frac{d}{q}, b^\frac{d}{p} - \frac{d+1}{2} \right\} \| f \|_p.
$$
• Taking $0 < b \ll 1$ and $a = 1$, we need to show $\exists f$ (depending on b, p, q) such that

$$\| \mathcal{F}^{-1} \left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2} \right) \|_q \gtrsim \max \left\{ 1, b^{-1 + \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right)}, b^\frac{d-1}{2} - \frac{d}{q}, b^\frac{d}{p} - \frac{d+1}{2} \right\} \| f \|_p.$$

• **Knapp type example:** With small enough k and c, we set

$$\hat{f}(\xi) = \psi \left(\frac{\xi_d - 1}{kb} \right) \prod_{j=1}^{d-1} \psi \left(\frac{\xi_j}{c \sqrt{b}} \right).$$
• Taking $0 < b \ll 1$ and $a = 1$, we need to show $\exists f$ (depending on b, p, q) such that

$$\| \mathcal{F}^{-1} \left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2} \right) \|_q \gtrsim \max \{ 1, b^{-1+\frac{d+1}{2}(\frac{1}{p} - \frac{1}{q})}, b^{\frac{d-1}{2} - \frac{d}{q}}, b^{d - \frac{d+1}{2}} \} \| f \|_p.$$

• **Knapp type example:** With small enough k and c, we set

$$\hat{f}(\xi) = \psi \left(\frac{\xi_d - 1}{kb} \right) \prod_{j=1}^{d-1} \psi \left(\frac{\xi_j}{c \sqrt{b}} \right).$$

Roughly, $\mathcal{F}^{-1} \left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2} \right) \sim b^{-1} f$ and $\| f \|_r \sim a^{\frac{d+1}{2}(1 - \frac{1}{r})}$.
• Taking $0 < b \ll 1$ and $a = 1$, we need to show $\exists f$ (depending on b, p, q) such that
\[
\left\| \mathcal{F}^{-1}\left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2} \right) \right\|_q \gtrsim \max \{ 1, b^{-1 + \frac{d+1}{2}}(\frac{1}{p} - \frac{1}{q}), b^{\frac{d}{2} - \frac{d}{q}}, b^{\frac{d}{p} - \frac{d+1}{2}} \} \| f \|_p.
\]

• **Knapp type example:** With small enough k and c, we set
\[
\hat{f}(\xi) = \psi\left(\frac{\xi_d - 1}{kb}\right) \prod_{j=1}^{d-1} \psi\left(\frac{\xi_j}{c \sqrt{b}}\right).
\]

Roughly, $\mathcal{F}^{-1}\left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2} \right) \sim b^{-1} f$ and $\| f \|_r \sim a^{\frac{d+1}{2}}(1 - \frac{1}{r})$.

• **Concentration near the sphere** S^{d-1}: We take $\hat{f} = \chi_0(|\xi|)$ and χ_0 is supported in $[1 - \epsilon_0, 1 + \epsilon_0]$.
Taking $0 < b \ll 1$ and $a = 1$, we need to show $\exists f$ (depending on b, p, q) such that

$$\left\| \mathcal{F}^{-1}\left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2} \right) \right\|_q \gtrsim \max \{1, b^{-1} + \frac{d+1}{2}\left(\frac{1}{p} - \frac{1}{q}\right), b^{\frac{d-1}{2}} - \frac{d}{q}, b^{\frac{d}{p}} - \frac{d+1}{2}\} \| f \|_p.$$

Knapp type example: With small enough k and c, we set

$$\hat{f}(\xi) = \psi\left(\frac{\xi_d - 1}{kb}\right) \prod_{j=1}^{d-1} \psi\left(\frac{\xi_j}{c \sqrt{b}}\right).$$

Roughly, $\mathcal{F}^{-1}\left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2} \right) \sim b^{-1}f$ and $\| f \|_r \sim a^{\frac{d+1}{2}(1 - \frac{1}{r})}.$

Concentration near the sphere S^{d-1}: We take $\hat{f} = \chi\circ(|\xi|)$ and $\chi\circ$ is supported in $[1 - \epsilon_0, 1 + \epsilon_0]$. If $|x| \sim b^{-1}$, then

$$\left| \mathcal{F}^{-1}\left(\frac{b \chi\circ(|\xi|)}{(|\xi|^2 - 1)^2 + b^2} \right)(x) \right| \sim |\hat{d}\sigma(x)| \sim |x|^{-\frac{d-1}{2}} \sim b^{\frac{d-1}{2}}.$$
Taking $0 < b \ll 1$ and $a = 1$, we need to show $\exists f$ (depending on b, p, q) such that

$$
\| \mathcal{F}^{-1}\left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2}\right) \|_q \gtrsim \max \{1, b^{-1} + \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q}\right), b^{d-1} - \frac{d}{q}, b^{d} - \frac{d+1}{2}\} \| f \|_p.
$$

Knapp type example: With small enough k and c, we set

$$
\hat{f}(\xi) = \psi\left(\frac{\xi_d - 1}{kb}\right) \prod_{j=1}^{d-1} \psi\left(\frac{\xi_j}{c\sqrt{b}}\right).
$$

Roughly, $\mathcal{F}^{-1}\left(\frac{b \hat{f}(\xi)}{(|\xi|^2 - 1)^2 + b^2}\right) \sim b^{-1} f$ and $\| f \|_r \sim a^{d+1} (1 - \frac{1}{r})$.

Concentration near the sphere S^{d-1}: We take $\hat{f} = \chi_\circ(|\xi|)$ and χ_\circ is supported in $[1 - \epsilon_0, 1 + \epsilon_0]$. If $|x| \sim b^{-1}$, then

$$
\left| \mathcal{F}^{-1}\left(\frac{b \chi_\circ(|\xi|)}{(|\xi|^2 - 1)^2 + b^2}\right)(x) \right| \sim |\hat{d}\sigma(x)| \sim |x|^{-\frac{d-1}{2}} \sim b^{\frac{d-1}{2}}.
$$

So, $\| \mathcal{F}^{-1}\left(\frac{b \chi_\circ(|\xi|)}{(|\xi|^2 - 1)^2 + b^2}\right) \|_q \gtrsim b^{\frac{d-1}{2} - \frac{d}{q}}$ while $\| f \|_p \sim 1$.
Conjecture

Since $\text{dist}(\frac{z}{|z|}, [0, \infty)) = |z|^{-1} \text{dist}(z, [0, \infty))$, it is natural to conjecture the following:

Conjecture (Sharp resolvent estimate)

For $d \geq 2$ and $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{R}_0(d) \setminus \{\text{some endpoint cases}\}$, the bound

$$\|(-\Delta - z)^{-1}\|_{p \to q} \sim |z|^{-1 + \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) + \gamma(p,q)} \text{dist}(z, [0, \infty))^{-\gamma(p,q)}.$$

holds with the implicit constant independent of $z \in \mathbb{C} \setminus [0, \infty)$.
Conjecture

Since $\text{dist}(\frac{z}{|z|}, [0, \infty)) = |z|^{-1} \text{dist}(z, [0, \infty))$, it is natural to conjecture the following:

Conjecture (Sharp resolvent estimate)

For $d \geq 2$ and $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{R}_0(d) \setminus \{\text{some endpoint cases}\}$, the bound

$$
\|(-\Delta - z)^{-1}\|_{p \to q} \sim |z|^{-1 + \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) + \gamma(p,q)} \text{dist}(z, [0, \infty))^{-\gamma(p,q)}.
$$

holds with the implicit constant independent of $z \in \mathbb{C} \setminus [0, \infty)$.

- It turns out the problem is closely related to the Bochner-Riesz problem, especially of negative order.
• Recall $\gamma(p, q) := \max \left\{ 0, 1 - \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \frac{d+1}{2} - \frac{d}{p}, \frac{d}{q} - \frac{d-1}{2} \right\}$.

• $d \geq 3$

• The value $\gamma(p, q)$ divides R_0 regions into four regions R_1, R_2, R_3, R'_3.

• $H_0 = \left(\frac{1}{2}, \frac{1}{2} \right)$

• $D_0 = \left(d - \frac{1}{2}, d - \frac{1}{2} \right)$

• If $X = (a, b)$, $X' = (1 - b, 1 - a)$.

• $B = \left(d + \frac{1}{2}, \left(d - 1 \right) \frac{1}{2} \frac{d}{2} \right)$

• $A = \left(d + \frac{1}{2}, d - \frac{3}{2} \right)$

• Figure: The case $d \geq 3$.

Sanghyuk Lee (Seoul National University Madison) Estimates for the resolvent of the Laplacian May 16, 2019 14 / 31
• Recall \(\gamma(p, q) := \max \left\{ 0, 1 - \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \frac{d+1}{2} - \frac{d}{p}, \frac{d}{q} - \frac{d-1}{2} \right\} \).

• \(d \geq 3 \)

• The value \(\gamma(p, q) \) divides \(\mathcal{R}_0 \) regions into four regions

\[\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}'_3 \]
• Recall \(\gamma(p, q) := \max \left\{ 0, \ 1 - \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \ \frac{d+1}{2} - \frac{d}{p}, \ \frac{d}{q} - \frac{d-1}{2} \right\} \).

• \(d \geq 3 \)
• The value \(\gamma(p, q) \) divides \(\mathcal{R}_0 \) regions into four regions

\[\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_3' \]

Figure: The case \(d \geq 3 \).
Recall $\gamma(p, q) := \max\left\{ 0, 1 - \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \frac{d+1}{2} - \frac{d}{p}, \frac{d}{q} - \frac{d-1}{2} \right\}$.

- $d \geq 3$
- The value $\gamma(p, q)$ divides \mathcal{R}_0 regions into four regions $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R'}_3$
- $H = \left(\frac{1}{2}, \frac{1}{2} \right)$

Figure: The case $d \geq 3$.

Sanghyuk Lee (Seoul National University Madison Lectures in Fourier Analysis in honor of Andreas Seeger)

Estimates for the resolvent of the Laplacian

May 16, 2019 14 / 31
• Recall \(\gamma(p, q) := \max \left\{ 0, 1 - \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \frac{d+1}{2} - \frac{d}{p}, \frac{d}{q} - \frac{d-1}{2} \right\} \).

• \(d \geq 3 \)

• The value \(\gamma(p, q) \) divides \(\mathcal{R}_0 \) regions into four regions

\(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_3' \)

• \(H = \left(\frac{1}{2}, \frac{1}{2} \right) \)

• \(D = \left(\frac{d-1}{2d}, \frac{d-1}{2d} \right) \)

Figure: The case \(d \geq 3 \).
• Recall \(\gamma(p, q) := \max \left\{ 0, 1 - \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \frac{d+1}{2} - \frac{d}{p}, \frac{d}{q} - \frac{d-1}{2} \right\} \).

• \(d \geq 3 \)
• The value \(\gamma(p, q) \) divides \(\mathcal{R}_0 \) regions into four regions \(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_3' \)

• \(H = \left(\frac{1}{2}, \frac{1}{2} \right) \)
• \(D = \left(\frac{d-1}{2d}, \frac{d-1}{2d} \right) \)
• If \(X = (a, b) \), \(X' \) is given by \(X' = (1 - b, 1 - a) \).

Figure: The case \(d \geq 3 \).
• Recall $\gamma(p, q) := \max \left\{ 0, 1 - \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \frac{d+1}{2} - \frac{d}{p}, \frac{d}{q} - \frac{d-1}{2} \right\}$.

• $d \geq 3$
• The value $\gamma(p, q)$ divides \mathcal{R}_0 regions into four regions $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_3'$

• $H = \left(\frac{1}{2}, \frac{1}{2} \right)$
• $D = \left(\frac{d-1}{2d}, \frac{d-1}{2d} \right)$

• If $X = (a, b)$, X' is given by $X' = (1 - b, 1 - a)$.

• $B = \left(\frac{d+1}{2d}, \frac{(d-1)^2}{2d(d+1)} \right)$

Figure: The case $d \geq 3$.
• Recall \(\gamma(p, q) := \max \left\{ 0, \ 1 - \frac{d+1}{2} \left(\frac{1}{p} - \frac{1}{q} \right), \ \frac{d+1}{2} - \frac{d}{p}, \ \frac{d}{q} - \frac{d-1}{2} \right\} \).

• \(d \geq 3 \)

• The value \(\gamma(p, q) \) divides \(\mathcal{R}_0 \) regions into four regions \(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_3' \)

• \(H = \left(\frac{1}{2}, \frac{1}{2} \right) \)

• \(D = \left(\frac{d-1}{2d}, \frac{d-1}{2d} \right) \)

• If \(X = (a, b) \), \(X' \) is given by \(X' = (1 - b, 1 - a) \).

• \(B = \left(\frac{d+1}{2d}, \frac{(d-1)^2}{2d(d+1)} \right) \)

• \(A = \left(\frac{d+1}{2d}, \frac{d-3}{2d} \right) \)

Figure: The case \(d \geq 3 \).
Figure: The case $d = 2$.
Main result

Theorem (Kwon–L.’18)

If \(d = 2 \) the conjecture is true. For \(d \geq 3 \), the conjecture is true if \(\left(\frac{1}{p}, \frac{1}{q} \right) \) is contained in the shaded region except the dashed lines.
Main result

Theorem (Kwon–L.'18)

If \(d = 2 \) the conjecture is true. For \(d \geq 3 \), the conjecture is true if \((\frac{1}{p}, \frac{1}{q})\) is contained in the shaded region except the dashed lines.

- The \(L^p - L^q \) boundedness fails if \((\frac{1}{p}, \frac{1}{q}) \in [B, A] \cup [B', A']\). But restricted weak type and weak type bounds holds.

\[\frac{1}{q} \]

\[\frac{1}{p} \]

\[\frac{2}{d} \]

\[\frac{d+1}{2d} \]

\[\frac{d}{d+1} \]
Main result

Theorem (Kwon–L.’18)

If \(d = 2 \) the conjecture is true. For \(d \geq 3 \), the conjecture is true if \(\left(\frac{1}{p}, \frac{1}{q} \right) \) is contained in the shaded region except the dashed lines.

- The \(L^p - L^q \) boundedness fails if \(\left(\frac{1}{p}, \frac{1}{q} \right) \in [B, A] \cup [B', A'] \). But restricted weak type and weak type bounds holds.
- The \(L^p - L^q \) bounds holds with the extra factor

\[
\log |z| - \log \text{dist}(z, [0, \infty)) + 1
\]
Numerology

• Let \(P_{\ast} = \left(\frac{1}{p_{\ast}}, \frac{1}{p_{\ast}} \right) \) with

\[
\frac{1}{p_{\ast}} := \begin{cases}
\frac{3(d-1)}{2(3d+1)} & \text{if } d \text{ is odd} \\
\frac{3d-2}{2(3d+2)} & \text{if } d \text{ is even}
\end{cases}
\]

• \(P_{\circ} = \left(\frac{1}{p_{\circ}}, \frac{1}{q_{\circ}} \right) \) where

\[
\left(\frac{1}{p_{\circ}}, \frac{1}{q_{\circ}} \right) := \begin{cases}
\left(\frac{(d+5)(d-1)}{2(d^2+4d-1)}, \frac{(d-1)(d+3)}{2(d^2+4d-1)} \right) & \text{if } d \text{ is odd} \\
\left(\frac{d^2+3d-6}{2(d^2+3d-2)}, \frac{(d-1)(d+2)}{2(d^2+3d-2)} \right) & \text{if } d \text{ is even}
\end{cases}
\]
Location of complex eigenvalues of $-\Delta + V$

Spectral region: For p, q, d in the theorem and $\ell > 0$ we set $Z_{p, q}^{\ell} := \{ z \in \mathbb{C} \setminus [0, \infty) : \| (\Delta - z) - 1 \|_{p \to q} \leq \ell \}$

Corollary: Let p, q be as in the main theorem and let $C > 0$ be the implicit constant for the upper bound. Suppose that $\| V \|_{L^{pq}} \leq \frac{1}{2C\ell}$. If $E \in C \setminus [0, \infty)$ and $u \in L^{q}(\mathbb{R}^d) \{ 0 \}$ satisfy $(\Delta - V)u = Eu$, then $E \in Z_{p, q}^{\ell}$.

Proof: If E were in $Z_{p, q}^{\ell}$, then $\| (\Delta - E) - 1 \|_{p \to q} \leq C\ell$. $\| u \|_{q} \leq C\ell \| (\Delta - E)u \|_{p} \leq C\ell \| (\Delta - V - E)u \|_{p} + \| Vu \|_{p} = C\ell \| Vu \|_{p} \leq C\ell \| V \|_{pq} \| u \|_{q} \leq \frac{1}{2\ell} \| u \|_{q}$, which implies $u \equiv 0$. Contradiction!
Location of complex eigenvalues of $-\Delta + V$

- Spectral region: For p, q, d in the theorem and $\ell > 0$ we set

$$Z_{p,q}(\ell) := \left\{ z \in \mathbb{C} \setminus [0, \infty) : \|(-\Delta - z)^{-1}\|_{p \to q} \leq \ell \right\}$$

$$\subset \left\{ z \in \mathbb{C} \setminus [0, \infty) : |z|^{-1 + \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) + \gamma(p,q)} \text{dist}(z, [0, \infty))^{-\gamma(p,q)} \lesssim \ell \right\}$$
Location of complex eigenvalues of $-\Delta + V$

- Spectral region: For p, q, d in the theorem and $\ell > 0$ we set

$$Z_{p, q}(\ell) := \left\{ z \in \mathbb{C} \setminus [0, \infty) : \|(-\Delta - z)^{-1}\|_{p \to q} \leq \ell \right\}$$

$$\subset \left\{ z \in \mathbb{C} \setminus [0, \infty) : |z|^{-1 + \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) + \gamma(p, q)} \text{dist}(z, [0, \infty)) - \gamma(p, q) \lesssim \ell \right\}$$

Corollary

Let p, q be as in the main theorem and let $C > 0$ be the implicit constant for the upper bound. Suppose that $\|V\|_{L^\frac{pq}{q-p} (\mathbb{R}^d)} \leq 1/(2C\ell)$.
Location of complex eigenvalues of $-\Delta + V$

- Spectral region: For p, q, d in the theorem and $\ell > 0$ we set
 \[
 \mathcal{Z}_{p,q}(\ell) := \left\{ z \in \mathbb{C} \setminus [0, \infty) : \|(-\Delta - z)^{-1}\|_{p \rightarrow q} \leq \ell \right\}
 \]
 \[
 \subset \left\{ z \in \mathbb{C} \setminus [0, \infty) : |z|^{-1 + \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) + \gamma(p,q)} \text{dist}(z, [0, \infty)) - \gamma(p,q) \lesssim \ell \right\}
 \]

Corollary

Let p, q be as in the main theorem and let $C > 0$ be the implicit constant for the upper bound. Suppose that $\|V\|_{L^\frac{pq}{q-p}(\mathbb{R}^d)} \leq 1/(2C\ell)$. If $E \in \mathbb{C} \setminus [0, \infty)$ and $u \in L^q(\mathbb{R}^d) \setminus \{0\}$ satisfy $(-\Delta + V)u = Eu$, which implies $u \equiv 0$. Contradiction!
Location of complex eigenvalues of $-\Delta + V$

- **Spectral region:** For p, q, d in the theorem and $\ell > 0$ we set
 \[
 \mathcal{Z}_{p,q}(\ell) := \left\{ z \in \mathbb{C} \setminus [0, \infty) : \|(-\Delta - z)^{-1} \|_{p \to q} \leq \ell \right\}
 \subset \left\{ z \in \mathbb{C} \setminus [0, \infty) : |z|^{-1 + \frac{d}{2} \left(\frac{1}{p} - \frac{1}{q} \right) + \gamma(p,q) \text{dist}(z, [0, \infty))} \right\}^{-\gamma(p,q)} \lesssim \ell
 \]

Corollary

Let p, q be as in the main theorem and let $C > 0$ be the implicit constant for the upper bound. Suppose that $\| V \|_{L^{\frac{pq}{q-p}}(\mathbb{R}^d)} \leq 1/(2C\ell)$. If $E \in \mathbb{C} \setminus [0, \infty)$ and $u \in L^q(\mathbb{R}^d) \setminus \{0\}$ satisfy $(-\Delta + V)u = Eu$, then $E \in \mathbb{C} \setminus \mathcal{Z}_{p,q}(\ell)$.

- **Proof.** If E were in $\mathcal{Z}_{p,q}(\ell)$, then $\|(-\Delta - E)^{-1} \|_{p \to q} \leq C\ell$.
 \[
 \| u \|_q \leq C\ell \|(-\Delta - E)u \|_p \leq C\ell \left(\| (-\Delta + V - E)u \|_p + \| Vu \|_p \right)
 = C\ell \| Vu \|_p \leq C\ell \| V \|_{\frac{pq}{q-p}} \| u \|_q \leq \frac{1}{2} \| u \|_q,
 \]
 which implies $u \equiv 0$. Contradiction!
Spectral regions

- If \(\left(\frac{1}{p}, \frac{1}{q} \right) \in \mathcal{R}_1 \setminus ([B, A] \cup [A, A'] \cup [A', b']) \)
• If p, q are as in Theorem and $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{R}_2$,

![Graph showing a region in the complex plane with points indicated.]

• Im $E \to 0$ as $|E| \to \infty$.
If p, q are as in Theorem and $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{R}_3 \cap \Delta ABD$,

\[\begin{array}{c}
0 \quad \frac{2}{d} \quad \frac{d+1}{2d} \quad 1 \quad \frac{1}{p} \\
\frac{1}{q} \end{array} \]
• If p, q are as in Theorem and $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{R}_3 \cap \triangle ABD$,

![Diagram](image1)

• If p, q are as in Theorem and $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{R}_3 \setminus ABD$,

![Diagram](image2)
On compact Riemannian manifolds

- Let \((M, g)\) be a \(d\)-dimensional compact Riemannian manifold without boundary.
On compact Riemannian manifolds

• Let \((M, g)\) be a \(d\)-dimensional compact Riemannian manifold without boundary.

Theorem (Dos Santos Ferreira, Kenig, and Salo, 14’)

Let \(d \geq 3\). For \(z \in \Xi_\delta := \{ z \in \mathbb{C} \setminus [0, \infty) : \text{Im} \sqrt{z} \geq \delta \}\) there is a uniform constant \(C\) independent of \(z\) such that

\[
\| (-\Delta_g - z)^{-1} f \|_{L^{\frac{2d}{d-2}}(M)} \leq C \| f \|_{L^{\frac{2d}{d+2}}(M)}.
\]

• This resembles the shape of spectral region for \((\frac{1}{p}, \frac{1}{q}) \in \tilde{R}_3, \tilde{R}_3'\).
On compact Riemannian manifolds

- Let \((M, g)\) be a \(d\)-dimensional compact Riemannian manifold without boundary.

Theorem (Dos Santos Ferreira, Kenig, and Salo, 14')

Let \(d \geq 3\). For \(z \in \Xi_\delta := \{ z \in \mathbb{C} \setminus [0, \infty) : \text{Im} \sqrt{z} \geq \delta \} \) there is a uniform constant \(C\) independent of \(z\) such that \(\| (\Delta_g - z)^{-1} f \|_{L^{\frac{2d}{d-2}}(M)} \leq C \| f \|_{L^{\frac{2d}{d+2}}(M)} \).

- Spectral regions for which the uniform \(L^{\frac{2d}{d+2}} - L^{\frac{2d}{d-2}} \) resolvent estimate holds.

Figure: Compact manifold case

- This resembles the shape of spectral region for \(\left(\frac{1}{p}, \frac{1}{q} \right) \in \tilde{R}_3, \tilde{R}'_3 \).
On compact Riemannian manifolds

- Let \((M, g)\) be a \(d\)-dimensional compact Riemannian manifold without boundary.

Theorem (Dos Santos Ferreira, Kenig, and Salo, 14’)

Let \(d \geq 3\). For \(z \in \Xi_\delta := \{z \in \mathbb{C} \setminus [0, \infty) : \text{Im} \sqrt{z} \geq \delta\}\) there is a uniform constant \(C\) independent of \(z\) such that

\[
\|(-\Delta_g - z)^{-1} f\|_{L^{\frac{2d}{d-2}}(M)} \leq C\|f\|_{L^{\frac{2d}{d+2}}(M)}.
\]

- Spectral regions for which the uniform \(L^{\frac{2d}{d+2}} - L^{\frac{2d}{d-2}}\) resolvent estimate holds.

Figure: Compact manifold case

Figure: Euclidean case

- This resembles the shape of spectral region for \((\frac{1}{p}, \frac{1}{q}) \in \widetilde{\mathcal{R}}_3, \widetilde{\mathcal{R}}'_3\).
Bochner–Riesz operator of negative order

\[B_\alpha f = F^{-1}(\hat{f}(\xi)^{\alpha} + \Gamma(1 + \alpha)\hat{f}(\xi)) \]

for \(\alpha > -1 \) and for \(\alpha \leq -1 \) it is defined by analytic continuation.

For \(d \geq 2 \) and \(\alpha \in (0, \frac{d+1}{2}) \)

\[P_\alpha(d) := \{(a, b) \in [0, 1]^2 : a - b \geq \frac{2\alpha d + 1}{2d + \alpha d}, a > \frac{d - 1}{2d + \alpha d}, b < \frac{d + 1}{2d - \alpha d}\} \]

Conjecture

Let \(d \geq 2 \) and \(0 < \alpha < \frac{d+1}{2} \).

\(B_\alpha \) is bounded from \(L^p \) to \(L^q \) if and only if \((1/p, 1/q) \in P_\alpha(d) \).
Bochner–Riesz operator of negative order

Let Γ is the gamma function. The classical Bochner–Riesz operator is given by

$$B^\alpha f = \mathcal{F}^{-1}\left(\frac{(1 - |\xi|^2)^\alpha}{\Gamma(1 + \alpha)} \hat{f}(\xi) \right)$$

for $\alpha > -1$ and for $\alpha \leq -1$ it is defined by analytic continuation.
Bochner–Riesz operator of negative order

- Let Γ be the gamma function. The classical Bochner–Riesz operator is given by
 \[
 B^\alpha f = \mathcal{F}^{-1} \left(\frac{(1 - |\xi|^2)^\alpha}{\Gamma(1 + \alpha)} \hat{f}(\xi) \right)
 \]
 for $\alpha > -1$ and for $\alpha \leq -1$ it is defined by analytic continuation.

-
 \[
 \mathcal{F}^{-1}(\hat{f} d\sigma)(x) = \frac{1}{(2\pi)^d} \int_{S^{d-1}} \hat{f}(\theta) e^{ix \cdot \theta} d\sigma(\theta) = B^{-1} f(x),
 \]
Bochner–Riesz operator of negative order

- Let Γ be the gamma function. The classical Bochner–Riesz operator is given by

$$B^{\alpha}f = \mathcal{F}^{-1}\left(\frac{(1 - |\xi|^2)^{\alpha}}{\Gamma(1 + \alpha)}\hat{f}(\xi)\right)$$

for $\alpha > -1$ and for $\alpha \leq -1$ it is defined by analytic continuation.

-

$$\mathcal{F}^{-1}(\hat{f} d\sigma)(x) = \frac{1}{(2\pi)^d} \int_{S^{d-1}} \hat{f}(\theta) e^{ix \cdot \theta} d\sigma(\theta) = B^{-1}f(x),$$

- For $d \geq 2$ and $\alpha \in (0, \frac{d+1}{2})$

$$\mathcal{P}_\alpha(d) := \left\{ (a, b) \in [0,1]^2 : a - b \geq \frac{2\alpha}{d+1}, a > \frac{d-1}{2d} + \frac{\alpha}{d}, b < \frac{d+1}{2d} - \frac{\alpha}{d} \right\}.$$
Bochner–Riesz operator of negative order

- Let Γ be the gamma function. The classical Bochner–Riesz operator is given by
 $$B^\alpha f = \mathcal{F}^{-1}\left(\frac{(1-|\xi|^2)^\alpha}{\Gamma(1+\alpha)} \hat{f}(\xi)\right)$$
 for $\alpha > -1$ and for $\alpha \leq -1$ it is defined by analytic continuation.

- For $d \geq 2$ and $\alpha \in (0, \frac{d+1}{2})$
 $$P_\alpha(d) := \left\{(a, b) \in [0, 1]^2 : a - b \geq \frac{2\alpha}{d+1}, a > \frac{d-1}{2d} + \frac{\alpha}{d}, b < \frac{d+1}{2d} - \frac{\alpha}{d}\right\}.$$

Conjecture

Let $d \geq 2$ and $0 < \alpha < \frac{d+1}{2}$. $B^{-\alpha}$ is bounded from L^p to L^q if and only if $(1/p, 1/q) \in P_\alpha(d)$.

Sanghyuk Lee (Seoul National University Madison) Estimation for the resolvent of the Laplacian May 16, 2019 23 / 31
Earlier results were obtained by Börjeson ('86), Sogge ('86), Carbery-Soria ('88), Seeger ('88).
Earlier results were obtained by Börjeson ('86), Sogge ('86), Carbery-Soria ('88), Seeger ('88).

The complete characterization of the necessity part is due to Börjeson.
Earlier results were obtained by Börjeson ('86), Sogge ('86), Carbery-Soria ('88), Seeger ('88).

The complete characterization of the necessity part is due to Börjeson.

Partial results regarding the critical estimate \(\left(\frac{1}{p} - \frac{1}{q} = \frac{2\alpha}{d+1} \right) \) were obtained by Bak, McMichael and D. Oberlin ('95).

When \(d = 2 \), the problem was settled by Bak ('97).

In higher dimensions the conjecture was verified by Cho, Kim, L. and Shim ('02) for
\[
\alpha > \frac{(d-2)(d+1)}{2(d-1)(d+2)}
\]
relying on the bilinear restriction estimates due to Tao.

Theorem (Kwon-L. '18)

Let \(d \geq 3 \). If
\[
\alpha > \begin{cases}
\frac{(d+1)(d-1)}{2(d+2)} & \text{when } d \text{ is odd}, \\
\frac{(d+1)(d-2)}{2(d+3)} & \text{when } d \text{ is even},
\end{cases}
\]
then the conjecture is true.
Earlier results were obtained by Börjeson ('86), Sogge ('86), Carbery-Soria ('88), Seeger ('88).

The complete characterization of the necessity part is due to Börjeson.

Partial results regarding the critical estimate \(\frac{1}{p} - \frac{1}{q} = \frac{2\alpha}{d+1} \) were obtained by Bak, McMichael and D. Oberlin ('95).

When \(d = 2 \), the problem was settled by Bak ('97).
Earlier results were obtained by Börjeson ('86), Sogge ('86), Carbery-Soria ('88), Seeger ('88).

The complete characterization of the necessity part is due to Börjeson.

Partial results regarding the critical estimate \(\frac{1}{p} - \frac{1}{q} = \frac{2\alpha}{d+1} \) were obtained by Bak, McMichael and D. Oberlin ('95).

When \(d = 2 \), the problem was settled by Bak ('97).

In higher dimensions the conjecture was verified by Cho, Kim, L. and Shim ('02) for \(\alpha > \frac{(d-2)(d+1)}{2(d-1)(d+2)} \) relying on the bilinear restriction estimates due to Tao.
Earlier results were obtained by Börjeson ('86), Sogge ('86), Carbery-Soria('88), Seeger('88).

The complete characterization of the necessity part is due to Börjeson.

Partial results regarding the critical estimate \(\frac{1}{p} - \frac{1}{q} = \frac{2\alpha}{d+1} \) were obtained by Bak, McMichael and D. Oberlin ('95).

When \(d = 2 \), the problem was settled by Bak ('97).

In higher dimensions the conjecture was verified by Cho, Kim, L. and Shim ('02) for \(\alpha > \frac{(d-2)(d+1)}{2(d-1)(d+2)} \) relying on the bilinear restriction estimates due to Tao.

Theorem (Kwon-L. ’18)

Let \(d \geq 3 \). If \(\alpha > \frac{(d+1)(d-1)}{2(d^2+4d-1)} \) when \(d \) is odd, and \(\alpha > \frac{(d+1)(d-2)}{2(d^2+3d-2)} \) when \(d \) is even, then the conjecture is true.
Brief overview on proof

- We may assume \(z = 1 + i\delta \) and \(0 < |\delta| \leq \epsilon_0 \) for fixed \(0 < \epsilon_0 \ll 1 \).
- The associated multiplier

\[
m_\delta(\xi) = \frac{1}{|\xi|^2 - z} \chi\left(\frac{|\xi| - 1}{\epsilon_0}\right) = \frac{|\xi|^2 - 1 + i\delta}{(|\xi|^2 - 1)^2 + \delta^2} \chi\left(\frac{|\xi| - 1}{\epsilon_0}\right).
\]

- Need to show

\[
\|m_\delta(D)f\|_q \lesssim \delta^{-\gamma(p,q)} \|f\|_p, \quad 0 < \delta \ll 1.
\]
Brief overview on proof

• We may assume $z = 1 + i\delta$ and $0 < |\delta| \leq \epsilon_0$ for fixed $0 < \epsilon_0 \ll 1$.

• The associated multiplier

$$m_\delta(\xi) = \frac{1}{|\xi|^2 - z} \chi\left(\frac{|\xi| - 1}{\epsilon_0}\right) = \frac{|\xi|^2 - 1 + i\delta}{(|\xi|^2 - 1)^2 + \delta^2} \chi\left(\frac{|\xi| - 1}{\epsilon_0}\right).$$

• Need to show

$$\|m_\delta(D)f\|_q \lesssim \delta^{-\gamma(p,q)} \|f\|_p, \quad 0 < \delta \ll 1.$$

• Slowly decaying multiplier

$$\frac{|\xi|^2 - 1 + i\delta}{(|\xi|^2 - 1)^2 + \delta^2} = \sum_{i=1}^{2} \frac{1}{\delta} \psi_i\left(\frac{1 - |\xi|^2}{\delta}\right), \quad \psi_1(t) = \frac{t}{t^2 + 1}, \quad \psi_1(t) = \frac{i}{t^2 + 1}.$$
Brief overview on proof

• We may assume $z = 1 + i\delta$ and $0 < |\delta| \leq \epsilon_0$ for fixed $0 < \epsilon_0 \ll 1$.

• The associated multiplier

$$m_\delta(\xi) = \frac{1}{|\xi|^2 - z} \chi\left(\frac{|\xi| - 1}{\epsilon_0}\right) = \frac{|\xi|^2 - 1 + i\delta}{(|\xi|^2 - 1)^2 + \delta^2} \chi\left(\frac{|\xi| - 1}{\epsilon_0}\right).$$

• Need to show

$$\|m_\delta(D)f\|_q \lesssim \delta^{-\gamma(p,q)}\|f\|_p, \quad 0 < \delta \ll 1.$$

• Slowly decaying multiplier

$$\frac{|\xi|^2 - 1 + i\delta}{(|\xi|^2 - 1)^2 + \delta^2} = \sum_{i=1}^2 \frac{1}{\delta} \psi_i\left(\frac{1 - |\xi|^2}{\delta}\right), \quad \psi_1(t) = \frac{t}{t^2 + 1}, \quad \psi_1(t) = \frac{i}{t^2 + 1}.$$

• Break $m_\delta(\xi)$ dyadically away the sphere $|\xi| = 1$ with $\beta \in C^\infty_c([-2, -\frac{1}{2}] \cup [\frac{1}{2}, 2])$ so that

$$\frac{1}{\delta} \psi_i\left(\frac{1 - |\xi|^2}{\delta}\right) = \delta \sum_{\lambda: \text{dayadic} \geq 1} \psi_i\left(\frac{1 - |\xi|^2}{\delta}\right) \beta\left(\frac{1 - |\xi|^2}{\lambda\delta}\right).$$
Generalization

- We need to generalize the multiplier operator to include those operators which appear via finite decomposition and recaling.

- We say $\psi \in \mathbb{E}ll(N, \epsilon)$ if
 - $\psi : [-1, 1]^{d-1} \to \mathbb{R}$, $\psi(0) = 0$ and $\nabla \psi(0) = 0$;
 - $\sup_{\xi' \in [-1,1]^{d-1}} \max_{0 \leq |\alpha| \leq N} \left| \partial_\xi^\alpha \psi(\xi') - \frac{1}{2} |\xi'|^2 \right| \leq \epsilon$.

- For $\psi \in \mathbb{E}ll(N, \epsilon)$ define
 \[
 \mathcal{M}_{\delta, \lambda}(\xi) := \varphi\left(\frac{m(\xi)(\xi_d - \psi(\xi'))}{\delta} \right) \beta\left(\frac{m(\xi)(\xi_d - \psi(\xi'))}{\delta \lambda} \right) \chi_0(\xi)
 \]
 - m smooth function with $m \sim 1$ on the support of the cutoff function.
 - $\chi_0 \in C_\infty(\mathbb{R}^d)$ is supported in a small nbd of the origin,
 - $\varphi \in C^\infty(\mathbb{R})$ such that $|\varphi^{(k)}(t)| \lesssim (1 + |t|)^{-k-1}$ for $k = 0, 1, 2, \cdots$.
Key estimate

Proposition (Kwon–L. ’18)

Let $0 < \delta \ll 1$ and $\lambda \geq 1$. For p, q satisfying $\frac{1}{q} = \frac{d-1}{d+1} (1 - \frac{1}{p})$ and

$$\frac{d}{2(d+2)} \frac{1}{p} < \frac{1}{p} < \frac{1}{2},$$

\[
\left\| M_{\delta, \lambda}(D) \hat{f}(\xi) \right\|_{L^q(\mathbb{R}^d)} \leq C \lambda^{-1}(\delta \lambda) \frac{d}{p} \frac{d-1}{2} \| f \|_{L^p(\mathbb{R}^d)}.
\]

- Follow strategy used for the negative Bochner-Riesz operator by Cho-Kim-L.-Shim
- Interpolation between linear and bilinear estimates give bilinear estimates on wider range.
- Deducing linear estimates from the bilinear estimates
Bilinear and linear estimates

Theorem

Let $q > \frac{2(d+2)}{d}$, $a_\circ \in (2^{-5}, 1/2]$ and $\psi \in \mathcal{E}(N, \epsilon)$. Suppose that

$$(\xi', \xi_d) \in \text{supp} \hat{f}_1, \quad (\zeta', \zeta_d) \in \text{supp} \hat{f}_2 \quad \implies \quad |\xi' - \zeta'| \geq a_\circ.$$

Then there is a constant C, independent of δ, λ and ψ, such that

$$\left\| \frac{1}{\lambda} \prod_{k=1,2} m_{\delta, \lambda}(D) f_k \right\|_{L^{q/2}(\mathbb{R}^d)} \leq C \delta \lambda^{-1} \prod_{k=1,2} \| f_k \|_{L^2(\mathbb{R}^d)}.$$

This is derived from a variant of Tao’s bilinear restriction estimate.
Let
\[\frac{1}{p^*_v} := \begin{cases} \frac{3(d-1)}{2(3d+1)} & \text{if } d \text{ is odd} \\ \frac{3d-2}{2(3d+2)} & \text{if } d \text{ is even} \end{cases} \]

Theorem

Let \(p^*_v < p \leq \infty \). Then there exist a large \(N > 0 \), a small \(\epsilon > 0 \) and a constant \(C > 0 \) such that

\[
\| M_{\delta, \lambda} (D)f \|_{L^p(\mathbb{R}^d)} \leq C \lambda^{-1}(\delta \lambda)^{d-\frac{d-1}{2}} \| f \|_{L^p(\mathbb{R}^d)},
\]

where the constants \(C \) are independent of \(\delta, \lambda, \psi \in E\|I(N, \epsilon) \).

- Use so called the Carleson-Sjölin type reduction argument which is based on the stationary phase method and asymptotic expansion. This produces the oscillatory kernel.
- To obtain sharp bound for the oscillatory convolution operator, we use the recent result due to Guth, Hickman (when \(d \geq 4 \)) and Iliopoulou who showed sharp oscillatory integral estimate under the addition elliptic condition.
The fractional Laplacian \((-\Delta)^{\frac{s}{2}}, 0 < s < d\)
The fractional Laplacian \((-\Delta)^{\frac{s}{2}}, 0 < s < d\)

- The resolvent for the fractional Laplacian \((-\Delta)^{\frac{s}{2}}\):

\[
((-\Delta)^{\frac{s}{2}} - z)^{-1} f(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} (|\xi|^s - z)^{-1} \hat{f}(\xi) d\xi.
\]
The fractional Laplacian \((-\Delta)^{s/2}, 0 < s < d\)

- The resolvent for the fractional Laplacian \((-\Delta)^{s/2}\):
 \[
 \left((-\Delta)^{s/2} - z\right)^{-1} f(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} \left(|\xi|^s - z\right)^{-1} \hat{f}(\xi) d\xi.
 \]

- Uniform bounds on \(\|\left((-\Delta)^{s/2} - z\right)^{-1}\|_{p \rightarrow q}\) with \(p, q = p'\) on a certain range were obtained by Cuenin to study eigenvalues of the fractional Schrödinger operators with complex potentials.
The fractional Laplacian \((-\Delta)^{\frac{s}{2}}\), 0 < s < d

• The resolvent for the fractional Laplacian \((-\Delta)^{\frac{s}{2}}\):

\[
((-\Delta)^{\frac{s}{2}} - z)^{-1} f(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix\cdot\xi} (|\xi|^s - z)^{-1} \hat{f}(\xi) d\xi.
\]

• Uniform bounds on \(\|((-\Delta)^{\frac{s}{2}} - z)^{-1}\|_{p\to q}\) with \(p, q = p'\) on a certain range were obtained by Cuenin to study eigenvalues of the fractional Schrödinger operators with complex potentials.

• Later, uniform bounds up to the optimal range of \(p, q\) were obtained by Huang, Yao, and Zheng for \(\frac{2d}{d+1} \leq s < d\).
The fractional Laplacian \((-Δ)^{\frac{s}{2}}, 0 < s < d\)

- The resolvent for the fractional Laplacian \((-Δ)^{\frac{s}{2}}\):

\[
((-Δ)^{\frac{s}{2}} - z)^{-1} f(ξ) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{iξ \cdot x} (|ξ|^s - z)^{-1} \hat{f}(ξ) dξ.
\]

- Uniform bounds on \(\|((-Δ)^{\frac{s}{2}} - z)^{-1}\|_{p→q}\) with \(p, q = p'\) on a certain range were obtained by Cuenin to study eigenvalues of the fractional Schrödinger operators with complex potentials.

- Later, uniform bounds up to the optimal range of \(p, q\) were obtained by Huang, Yao, and Zheng for \(\frac{2d}{d+1} \leq s < d\).

- By the same argument we also have the similar result for the fractional Laplacian except some endpoint cases:

\[
\|((-Δ)^{\frac{s}{2}} - z)^{-1}\|_{p→q} ∼ |z|^{-1+\frac{d}{s}(\frac{1}{p} - \frac{1}{q}) + \gamma(p, q)} \text{dist}(z, [0, ∞))^{-\gamma(p, q)}.
\]
Congratulations!