https://www.math.wisc.edu/wiki/api.php?action=feedcontributions&user=Aohof&feedformat=atomUW-Math Wiki - User contributions [en]2020-08-12T04:49:18ZUser contributionsMediaWiki 1.30.1https://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18401Graduate Algebraic Geometry Seminar2019-11-12T07:15:06Z<p>Aohof: /* November 13 */ Edited abstract to reflect time constraints.</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Geometry of Generalized Fermat Curves ]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Brauer groups and obstruction problems]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| The Ax-Grothendieck theorem and other fun stuff]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Buildings and algebraic groups]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| Title TBD]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and <s>developing</s> gazing wistfully in the direction of the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Aohofhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18386Graduate Algebraic Geometry Seminar2019-11-10T22:08:57Z<p>Aohof: /* November 13 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Geometry of Generalized Fermat Curves ]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Brauer groups and obstruction problems]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| The Ax-Grothendieck theorem and other fun stuff]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Buildings and algebraic groups]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| Title TBD]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and developing the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Aohofhttps://www.math.wisc.edu/wiki/index.php?title=Summer_2019_Algebraic_Geometry_Reading_Group&diff=17383Summer 2019 Algebraic Geometry Reading Group2019-04-24T22:40:23Z<p>Aohof: /* Summer plans */</p>
<hr />
<div>This is the page for the Summer 2019 Algebraic Geometry Reading Group. <br />
<br />
== Resources ==<br />
<br />
We plan to primarily use the newest version of Ravi Vakil's The Rising Sea: Foundations of Algebraic Geometry, which can be found here: http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf.<br />
<br />
At times we may also use Hartshorne's Algebraic Geometry.<br />
<br />
== Schedule ==<br />
<br />
10 Total Weeks: May 13-31, June 24-August 9<br />
<br />
Roughly 3 meetings per week for 1-1.5 hours each.<br />
<br />
Exact days will be determined based on the schedules of the participants.<br />
<br />
<br />
'''Optimistic reading schedule (all chapters from Vakil):'''<br />
<br />
'''Week of May 13:''' Ch. 3, Ch. 4 (Affine schemes, structure sheaf)<br />
<br />
'''Week of May 20:''' Ch. 5, Start Ch. 6 (Properties of schemes, morphisms of schemes)<br />
<br />
'''Week of May 27:''' Finish Ch. 6, Ch. 7 (Classes of morphisms of schemes)<br />
<br />
'''Week of June 24:''' Ch. 8, Start Ch. 9 (Closed embeddings and Cartier divisors, fibered product of schemes)<br />
<br />
'''Week of July 1:''' Finish Ch. 9, Ch. 10 (Separated and proper morphisms, varieties)<br />
<br />
'''Week of July 8:''' Ch. 11, Start Ch. 12 (Dimension, regularity and smoothness)<br />
<br />
'''Week of July 15:''' Finish Ch. 12, Ch. 13 (Quasicoherent and coherent sheaves)<br />
<br />
'''Week of July 22:''' Ch. 14, Start Ch. 15 (Line bundles, projective schemes)<br />
<br />
'''Week of July 29:''' Finish Ch. 15, Ch. 16 (Pushforwards and pullbacks of quasicoherent sheaves)<br />
<br />
'''Week of August 5:''' Ch. 18, Ch. 19, Ch. 21 (Cech cohomology, curves, differentials)<br />
<br />
== General Meeting Structure ==<br />
<br />
This reading seminar will be structured as follows. Every meeting will have an assigned "leader," who will usually be one of the reading group participants, but could at times be an older grad student or professor. It will be expected that everyone attending will read the assigned chapters prior to the meeting. The "leader" is expected to additionally work out some examples prior and will be responsible for guiding the group discussion during the meeting. Meetings will primarily be spent discussing questions that everyone has about the reading and going through examples together. Depending on the interest of the group, we may also have problem solving sessions.<br />
<br />
'''If you are interested in joining this reading group, please contact Caitlyn Booms at cbooms@wisc.edu by May 8, 2019 and join the mailing list by emailing join-ag (at) lists.wisc.edu'''<br />
<br />
== Summer plans ==<br />
<br />
If you feel like telling us your general plans for the summer, so that we'll know when you are around Madison, please do so here:<br />
<br />
Caitlyn: out of town May 29-June 23 and Aug. 17-25<br />
<br />
Colin: Out of town July 1-15 and one week sometime in June probably<br />
<br />
Alex H: Probably mostly in town, but will be gone late July - early August.</div>Aohofhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17200Graduate Algebraic Geometry Seminar2019-03-23T19:04:55Z<p>Aohof: /* April 10 */ Thank you for the même, David</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
<br /><br />
[[File:Dg-meme.png|center]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
<br /><br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
<br/><br />
[[File:Dial-M-For-Elliptic.png|400px|center]]<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Kindergarten GAGA<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Join me in regressing to an infantile state as we discuss Serre's 1956 paper ''Algebraic geometry and analytic geometry'', widely considered to be the most influential work ever authored by a mathematician under the age of five. We will define the notion of an analytic space, construct the analytic space associated to any algebraic variety over <math>\mathbb{C}</math>, and examine the relationships between the two, including the equivalence between coherent algebraic sheaves and coherent analytic sheaves in the projective case.<br />
<br />
[[File:Badromancehof.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Aohofhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16901Graduate Algebraic Geometry Seminar2019-02-11T02:03:58Z<p>Aohof: Okay yeah I'll go with it</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| Classification of TFT's]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Title]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Classification of TFT's<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Aohofhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16875Graduate Algebraic Geometry Seminar2019-02-07T05:48:43Z<p>Aohof: Undo revision 16874 by Aohof (talk) Mighta jumped the gun there</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| Classification of TFT's]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Title]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Classification of TFT's<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Aohofhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16874Graduate Algebraic Geometry Seminar2019-02-07T05:33:20Z<p>Aohof: </p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| Classification of TFT's]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Title]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Classification of TFT's<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Aohof