https://www.math.wisc.edu/wiki/api.php?action=feedcontributions&user=Drwagner&feedformat=atomUW-Math Wiki - User contributions [en]2020-08-06T02:43:20ZUser contributionsMediaWiki 1.30.1https://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18867Graduate Algebraic Geometry Seminar2020-02-02T19:01:01Z<p>Drwagner: </p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
==Ed Dewey's Wish List Of Olde==__NOTOC__<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
<br />
== Spring 2020 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| January 29<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Lefschetz hyperplane section theorem via Morse theory]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 5<br />
| bgcolor="#C6D46E"| Asvin Gothandaraman<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| An Introduction to Unirationality]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 12<br />
| bgcolor="#C6D46E"| Qiao He<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 19<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 26<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| Intro to toric varieties]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 4<br />
| bgcolor="#C6D46E"| Peter<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 4| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 11<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 11| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 25<br />
| bgcolor="#C6D46E"| Steven He<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 25| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 1<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 1| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 8<br />
| bgcolor="#C6D46E"| Maya Banks<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 8| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 15<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 15| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 22<br />
| bgcolor="#C6D46E"| Ruofan<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 22| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 29<br />
| bgcolor="#C6D46E"| John Cobb<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 29| Title]]<br />
|}<br />
</center><br />
<br />
== January 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lefschetz hyperplane section theorem via Morse theory<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Morse theory allows you to learn about the topology of a manifold by studying the critical points of a nice function on the manifold. This perspective produces a nice proof of the theorem in the title, which concerns the homology of smooth projective varieties over C. I'll explain what the theorem says, say something about what Morse theory is and why it's related, and then finish with a neat example. I'm aiming to make this understandable to someone who's taken algebraic geometry 1 and topology 1.<br />
|} <br />
</center><br />
<br />
== February 5 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Asvin Gothandaraman '''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: An introduction to unirationality<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will introduce the notion of unirationality and show that cubic hypersurfaces are unirational (following Kollar). If time permits, I will also show that unirational varieties are simply connected. <br />
|} <br />
</center><br />
<br />
== February 12 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Qiao He'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 19 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 26 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Intro to Toric Varieties<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Peter'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Steven He'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 8 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Maya Banks'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 15 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 22 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Ruofan'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''John Cobb'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18866Graduate Algebraic Geometry Seminar2020-02-02T18:57:55Z<p>Drwagner: /* Spring 2020 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
==Ed Dewey's Wish List Of Olde==__NOTOC__<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
<br />
== Spring 2020 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| January 29<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Lefschetz hyperplane section theorem via Morse theory]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 5<br />
| bgcolor="#C6D46E"| Asvin Gothandaraman<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| An Introduction to Unirationality]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 12<br />
| bgcolor="#C6D46E"| Qiao He<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 19<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 26<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| Intro to toric varieties]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 4<br />
| bgcolor="#C6D46E"| Peter<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 4| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 11<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 11| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 25<br />
| bgcolor="#C6D46E"| Steven He<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 25| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 1<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 1| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 8<br />
| bgcolor="#C6D46E"| Maya Banks<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 8| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 15<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 15| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 22<br />
| bgcolor="#C6D46E"| Ruofan<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 22| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 29<br />
| bgcolor="#C6D46E"| John Cobb<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 29| Title]]<br />
|}<br />
</center><br />
<br />
== January 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 5 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 12 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 19 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 26 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 8 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 15 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 22 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18723Graduate Algebraic Geometry Seminar2020-01-21T17:01:06Z<p>Drwagner: /* Fall 2019 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
==Ed Dewey's Wish List Of Olde==__NOTOC__<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
<br />
== Spring 2020 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| January 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 5<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 12<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 19<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 26<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 4<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 4| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 11<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 11| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 25<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 25| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 1<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 1| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 8<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 8| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 15<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 15| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 22<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 22| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 29| Title]]<br />
|}<br />
</center><br />
<br />
== January 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 5 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 12 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 19 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 26 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 8 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 15 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 22 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18722Graduate Algebraic Geometry Seminar2020-01-21T17:00:16Z<p>Drwagner: /* Ed Dewey's Wish List Of Olde */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
==Ed Dewey's Wish List Of Olde==__NOTOC__<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| January 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 5<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 12<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 19<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 26<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 4<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 4| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 11<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 11| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 25<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 25| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 1<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 1| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 8<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 8| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 15<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 15| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 22<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 22| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 29| Title]]<br />
|}<br />
</center><br />
<br />
== January 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 5 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 12 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 19 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 26 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 8 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 15 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 22 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18721Graduate Algebraic Geometry Seminar2020-01-21T16:58:49Z<p>Drwagner: /* Ed Dewey's Wish List Of Olde */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| January 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 5<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 12<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 19<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 26<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 4<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 4| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 11<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 11| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 25<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 25| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 1<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 1| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 8<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 8| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 15<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 15| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 22<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 22| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 29| Title]]<br />
|}<br />
</center><br />
<br />
== January 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 5 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 12 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 19 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 26 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 8 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 15 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 22 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18720Graduate Algebraic Geometry Seminar2020-01-21T16:58:08Z<p>Drwagner: </p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| January 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 5<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 12<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 19<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 26<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 4<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 4| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 11<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 11| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 25<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 25| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 1<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 1| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 8<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 8| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 15<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 15| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 22<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 22| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 29| Title]]<br />
|}<br />
</center><br />
<br />
== January 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 5 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 12 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 19 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 26 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 8 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 15 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 22 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 29 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Speaker'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18719Graduate Algebraic Geometry Seminar2020-01-21T16:53:51Z<p>Drwagner: /* The List of Topics that we Made February 2018 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| January 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 5<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 12<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 19<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 26<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 4<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 4| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 11<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 11| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 25<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 25| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 1<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 1| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 8<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 8| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 15<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 15| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 22<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 22| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 29| Title]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and <s>developing</s> gazing wistfully in the direction of the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Computing Gr<span>&#246;</span>bner Bases of Submodules<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will give motivation for and define Gr<span>&#246;</span>bner bases of submodules of finitely generated free modules over a polynomial ring S=k[x_1,...,x_r]. Not only are such bases extremely useful in constructive module theory and elimination theory, they are actually computable thanks to Buchberger's Algorithm. Further, they have a wide variety of applications in algebraic geometry including aiding in the computation of syzygies (kernels of maps of finitely generated, free S-modules), Hilbert functions, intersections of submodules, saturations, annihilators, projective closures, and elimination ideals. We will work through several examples and discuss some of these applications.<br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Hyperplane arrangements and maximum likelihood degree<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The topology of the complements of hyperplane arrangements encode lots of interesting combinatorial information about the arrangements. I’ll state (and hopefully mostly prove) a neat fact about the Euler characteristic of the complement of a complex (essential) hyperplane arrangement, and discuss how it has recently been generalized to a larger class of varieties.<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Buchsbaum-Eisenbud-Horrocks Conjecture<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Betti numbers are defined to be the ranks of the free modules in the free resolution of a module. The Buchsbaum-Eisenbud-Horrocks conjecture gives upper bounds for the Betti numbers. I'll state the conjecture and give some examples.<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18718Graduate Algebraic Geometry Seminar2020-01-21T16:53:15Z<p>Drwagner: /* Fall 2019 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| January 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 5<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 12<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 19<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 26<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 4<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 4| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 11<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 11| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 25<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 25| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 1<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 1| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 8<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 8| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 15<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 15| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 22<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 22| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 29<br />
| bgcolor="#C6D46E"| Speaker<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 29| Title]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and <s>developing</s> gazing wistfully in the direction of the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Computing Gr<span>&#246;</span>bner Bases of Submodules<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will give motivation for and define Gr<span>&#246;</span>bner bases of submodules of finitely generated free modules over a polynomial ring S=k[x_1,...,x_r]. Not only are such bases extremely useful in constructive module theory and elimination theory, they are actually computable thanks to Buchberger's Algorithm. Further, they have a wide variety of applications in algebraic geometry including aiding in the computation of syzygies (kernels of maps of finitely generated, free S-modules), Hilbert functions, intersections of submodules, saturations, annihilators, projective closures, and elimination ideals. We will work through several examples and discuss some of these applications.<br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Hyperplane arrangements and maximum likelihood degree<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The topology of the complements of hyperplane arrangements encode lots of interesting combinatorial information about the arrangements. I’ll state (and hopefully mostly prove) a neat fact about the Euler characteristic of the complement of a complex (essential) hyperplane arrangement, and discuss how it has recently been generalized to a larger class of varieties.<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Buchsbaum-Eisenbud-Horrocks Conjecture<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Betti numbers are defined to be the ranks of the free modules in the free resolution of a module. The Buchsbaum-Eisenbud-Horrocks conjecture gives upper bounds for the Betti numbers. I'll state the conjecture and give some examples.<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18717Graduate Algebraic Geometry Seminar2020-01-21T16:47:14Z<p>Drwagner: /* Give a talk! */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cwcrowley@wisc.edu Colin] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Geometry of Generalized Fermat Curves ]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Brauer groups and obstruction problems]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| The Ax-Grothendieck theorem and other fun stuff]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Buildings and algebraic groups]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Tropicalization Blues]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Computing Gr<span>&#246;</span>bner Bases of Submodules]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Hyperplane arrangements and maximum likelihood degree]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| The Buchsbaum-Eisenbud-Horrocks Conjecture]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and <s>developing</s> gazing wistfully in the direction of the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Computing Gr<span>&#246;</span>bner Bases of Submodules<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will give motivation for and define Gr<span>&#246;</span>bner bases of submodules of finitely generated free modules over a polynomial ring S=k[x_1,...,x_r]. Not only are such bases extremely useful in constructive module theory and elimination theory, they are actually computable thanks to Buchberger's Algorithm. Further, they have a wide variety of applications in algebraic geometry including aiding in the computation of syzygies (kernels of maps of finitely generated, free S-modules), Hilbert functions, intersections of submodules, saturations, annihilators, projective closures, and elimination ideals. We will work through several examples and discuss some of these applications.<br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Hyperplane arrangements and maximum likelihood degree<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The topology of the complements of hyperplane arrangements encode lots of interesting combinatorial information about the arrangements. I’ll state (and hopefully mostly prove) a neat fact about the Euler characteristic of the complement of a complex (essential) hyperplane arrangement, and discuss how it has recently been generalized to a larger class of varieties.<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Buchsbaum-Eisenbud-Horrocks Conjecture<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Betti numbers are defined to be the ranks of the free modules in the free resolution of a module. The Buchsbaum-Eisenbud-Horrocks conjecture gives upper bounds for the Betti numbers. I'll state the conjecture and give some examples.<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18716Graduate Algebraic Geometry Seminar2020-01-21T16:46:03Z<p>Drwagner: /* Organizers' Contact Info */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Geometry of Generalized Fermat Curves ]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Brauer groups and obstruction problems]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| The Ax-Grothendieck theorem and other fun stuff]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Buildings and algebraic groups]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Tropicalization Blues]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Computing Gr<span>&#246;</span>bner Bases of Submodules]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Hyperplane arrangements and maximum likelihood degree]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| The Buchsbaum-Eisenbud-Horrocks Conjecture]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and <s>developing</s> gazing wistfully in the direction of the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Computing Gr<span>&#246;</span>bner Bases of Submodules<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will give motivation for and define Gr<span>&#246;</span>bner bases of submodules of finitely generated free modules over a polynomial ring S=k[x_1,...,x_r]. Not only are such bases extremely useful in constructive module theory and elimination theory, they are actually computable thanks to Buchberger's Algorithm. Further, they have a wide variety of applications in algebraic geometry including aiding in the computation of syzygies (kernels of maps of finitely generated, free S-modules), Hilbert functions, intersections of submodules, saturations, annihilators, projective closures, and elimination ideals. We will work through several examples and discuss some of these applications.<br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Hyperplane arrangements and maximum likelihood degree<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The topology of the complements of hyperplane arrangements encode lots of interesting combinatorial information about the arrangements. I’ll state (and hopefully mostly prove) a neat fact about the Euler characteristic of the complement of a complex (essential) hyperplane arrangement, and discuss how it has recently been generalized to a larger class of varieties.<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Buchsbaum-Eisenbud-Horrocks Conjecture<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Betti numbers are defined to be the ranks of the free modules in the free resolution of a module. The Buchsbaum-Eisenbud-Horrocks conjecture gives upper bounds for the Betti numbers. I'll state the conjecture and give some examples.<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/view/colincrowley/home Colin Crowley]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18715Graduate Algebraic Geometry Seminar2020-01-21T16:43:11Z<p>Drwagner: /* Past Semesters */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Geometry of Generalized Fermat Curves ]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Brauer groups and obstruction problems]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| The Ax-Grothendieck theorem and other fun stuff]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Buildings and algebraic groups]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Tropicalization Blues]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Computing Gr<span>&#246;</span>bner Bases of Submodules]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Hyperplane arrangements and maximum likelihood degree]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| The Buchsbaum-Eisenbud-Horrocks Conjecture]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and <s>developing</s> gazing wistfully in the direction of the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Computing Gr<span>&#246;</span>bner Bases of Submodules<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will give motivation for and define Gr<span>&#246;</span>bner bases of submodules of finitely generated free modules over a polynomial ring S=k[x_1,...,x_r]. Not only are such bases extremely useful in constructive module theory and elimination theory, they are actually computable thanks to Buchberger's Algorithm. Further, they have a wide variety of applications in algebraic geometry including aiding in the computation of syzygies (kernels of maps of finitely generated, free S-modules), Hilbert functions, intersections of submodules, saturations, annihilators, projective closures, and elimination ideals. We will work through several examples and discuss some of these applications.<br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Hyperplane arrangements and maximum likelihood degree<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The topology of the complements of hyperplane arrangements encode lots of interesting combinatorial information about the arrangements. I’ll state (and hopefully mostly prove) a neat fact about the Euler characteristic of the complement of a complex (essential) hyperplane arrangement, and discuss how it has recently been generalized to a larger class of varieties.<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Buchsbaum-Eisenbud-Horrocks Conjecture<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Betti numbers are defined to be the ranks of the free modules in the free resolution of a module. The Buchsbaum-Eisenbud-Horrocks conjecture gives upper bounds for the Betti numbers. I'll state the conjecture and give some examples.<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2019 Fall 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar_Fall_2019&diff=18714Graduate Algebraic Geometry Seminar Fall 20192020-01-21T16:42:29Z<p>Drwagner: Created page with "''' '''When:''' Wednesdays 4:25pm '''Where:''' Van Vleck B317 Lizzie the OFFICIAL mascot of GAGS!! '''Who:''' All undergraduate and graduate..."</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Geometry of Generalized Fermat Curves ]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Brauer groups and obstruction problems]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| The Ax-Grothendieck theorem and other fun stuff]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Buildings and algebraic groups]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Tropicalization Blues]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Computing Gr<span>&#246;</span>bner Bases of Submodules]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Hyperplane arrangements and maximum likelihood degree]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| The Buchsbaum-Eisenbud-Horrocks Conjecture]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and <s>developing</s> gazing wistfully in the direction of the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Computing Gr<span>&#246;</span>bner Bases of Submodules<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will give motivation for and define Gr<span>&#246;</span>bner bases of submodules of finitely generated free modules over a polynomial ring S=k[x_1,...,x_r]. Not only are such bases extremely useful in constructive module theory and elimination theory, they are actually computable thanks to Buchberger's Algorithm. Further, they have a wide variety of applications in algebraic geometry including aiding in the computation of syzygies (kernels of maps of finitely generated, free S-modules), Hilbert functions, intersections of submodules, saturations, annihilators, projective closures, and elimination ideals. We will work through several examples and discuss some of these applications.<br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Hyperplane arrangements and maximum likelihood degree<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The topology of the complements of hyperplane arrangements encode lots of interesting combinatorial information about the arrangements. I’ll state (and hopefully mostly prove) a neat fact about the Euler characteristic of the complement of a complex (essential) hyperplane arrangement, and discuss how it has recently been generalized to a larger class of varieties.<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Buchsbaum-Eisenbud-Horrocks Conjecture<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Betti numbers are defined to be the ranks of the free modules in the free resolution of a module. The Buchsbaum-Eisenbud-Horrocks conjecture gives upper bounds for the Betti numbers. I'll state the conjecture and give some examples.<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18404Graduate Algebraic Geometry Seminar2019-11-12T15:30:58Z<p>Drwagner: /* Fall 2019 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Geometry of Generalized Fermat Curves ]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Brauer groups and obstruction problems]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| The Ax-Grothendieck theorem and other fun stuff]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Buildings and algebraic groups]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Tropicalization Blues]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| Title TBD]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Geometry of Generalized Fermat Curves <br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: We will look at the generalized Fermat equation, and see how studying its integral points leads one to study quotient stacks. We will then very quickly turn and run away from the general picture to a particularly simple example of these quotient stacks, the M-curves of Darmon-Granville, and how they can be used to say something about integral points without having to actually know what the hell a stack is.<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Brauer groups and obstruction problems<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Brauer groups are ubiquitous in arithmetic and algebraic geometry. I will try to describe different contexts in which they appear, ranging from Brauer groups of fields and class field theory, to obstructions to moduli problems and derived equivalences. <br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: The Ax-Grothendieck theorem and other fun stuff<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: The Ax-Grothendieck theorem says that any polynomial map from C^n to C^n that is injective is also surjective. The way this is proven is to note that the statement is trivial over finite fields, and somehow use this to work up to the complex numbers. We'll talk about this and other ways of translating information between finite fields and C.<br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Buildings and algebraic groups<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will give a concrete introduction to the notion of a Tits building and its relationship to algebraic groups.<br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Lorentzian Polynomials<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
Lorentzian polynomials are a family of multivariate polynomials recently introduced by Branden and Huh. We will define Lorentzian polynomials and survey some of their applications to combinatorics, representation theory, and computer science. The first 20 minutes of this talk should not require more than the ability to take partial derivatives of polynomials and basic linear algebra.<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Tropicalization Blues<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: Tropicalization turns algebro-geometric objects into piecewise linear ones which can then be studied through the lens of combinatorics. In this talk, I will introduce the basic construction, then discuss some of the recent efforts to generalize and improve upon it, touching upon the Giansiracusa tropicalization and <s>developing</s> gazing wistfully in the direction of the machinery of ordered blueprints necessary for the Lorscheid tropicalization.<br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18076Graduate Algebraic Geometry Seminar2019-10-01T20:08:03Z<p>Drwagner: /* October 2 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 2<br />
| bgcolor="#C6D46E"| <br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 2| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| Title TBD]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 2 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''''''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=18075Graduate Algebraic Geometry Seminar2019-10-01T20:07:33Z<p>Drwagner: /* Fall 2019 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 18| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#September 25| Derived Groups and Groupoids]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 2<br />
| bgcolor="#C6D46E"| <br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 2| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 9| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 16| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 23| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#October 30| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 6| Lorentzian Polynomials]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 13| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 20| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 27<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#November 27| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 4| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| Erika Pirnes<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#December 11| Title TBD]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: Derived Groups and Groupoids<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In this talk, we will discuss groups and groupoids in the derived category of dg schemes. I will focus on examples instead of the abstract theory. If X is a smooth subscheme of a smooth scheme S over the field of complex numbers, then the derived self-intersection of X in S is a groupoid. We will investigate the corresponding Lie algebroid of the groupoid I mentioned above, and exponential map between them.<br />
<br />
|} <br />
</center><br />
<br />
== October 2 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Niundun Wang'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vlad Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Erika Pirnes'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18054AMS Student Chapter Seminar2019-09-30T21:47:10Z<p>Drwagner: /* November 20, TBD */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
Title: Number string sequences<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17946Graduate Algebraic Geometry Seminar2019-09-19T13:08:56Z<p>Drwagner: /* Fall 2019 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Fall 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| September 18<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#September 12| M_g Potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| September 25<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#September 26| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 2<br />
| bgcolor="#C6D46E"| Niundun Wang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#October 3| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 9<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#October 10| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 16<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#October 17| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 23<br />
| bgcolor="#C6D46E"| Alex Mine<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#October 24| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| October 30<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#October 31| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#November 7| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 13<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#November 14| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#November 21| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| November 28<br />
| bgcolor="#C6D46E"| Thanksgiving Break<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#November 30| ]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 4<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#December 5| Title TBD]]<br />
|-<br />
| bgcolor="#E0E0E0"| December 11<br />
| bgcolor="#C6D46E"| TBD<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar Fall 2018#December 12| Title TBD]]<br />
|}<br />
</center><br />
<br />
== September 18 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title: M_g Potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: In 1983, David Mumford proposed that the rational cohomology ring of Mg should be a polynomial algebra. I will discuss some of the history of Mumford's conjecture, possibly indicating a few ideas from the 2007 proof as the Madsen-Weiss theorem. If all goes well, the talk will take us through such diverse places as homotopy theory, representation stability, combinatorics of ribbon graph complexes, and deformations of algebras.<br />
<br />
|} <br />
</center><br />
<br />
== September 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 2 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 9 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 16 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== October 30 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== November 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== November 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Thanksgiving Break'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: <br />
<br />
|} <br />
</center><br />
<br />
== December 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== December 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBD'''<br />
|-<br />
| bgcolor="#BCD2EE" align="center" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract:<br />
<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2019 Spring 2019]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17414Graduate Algebraic Geometry Seminar2019-05-01T18:22:47Z<p>Drwagner: /* May 1 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[#March 27| Quadratic Forms]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[#April 3| Riemann-Roch and Abel-Jacobi theory on a finite graph]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[#April 17| Inseparable maps and quotients of varieties]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[#April 24| Introduction to Boij-S&#246;derberg Theory]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
<br /><br />
[[File:Dg-meme.png|center]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
<br /><br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
<br/><br />
[[File:Dial-M-For-Elliptic.png|400px|center]]<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Quadratic Forms<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Starting from the classical story of binary quadratic forms, we'll move on to more modern aspects of the theory of quadratic forms and try to make sense of some mass formulas.<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Riemann-Roch and Abel-Jacobi theory on a finite graph<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A finite graph is like a Riemann surface, or a smooth projective curve. Following the paper by Baker and Norine, we will investigate linear equivalence of divisors on graphs, the Jacobian of a graph, and a combinatorial interpretation of these as a chip firing game.<br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Kindergarten GAGA<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Join me in regressing to an infantile state as we discuss Serre's 1956 paper ''Algebraic geometry and analytic geometry'', widely considered to be the most influential work ever authored by a mathematician under the age of five. We will define the notion of an analytic space, construct the analytic space associated to any algebraic variety over <math>\mathbb{C}</math>, and examine the relationships between the two, including the equivalence between coherent algebraic sheaves and coherent analytic sheaves in the projective case.<br />
<br />
[[File:Badromancehof.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Inseparable maps and quotients of varieties<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: The theory of inseparable maps is inseparable from the study of varieties in positive characteristic, as are quotients of varieties by wonderfully non-reduced group schemes. I will talk about the theory of derivations and Lie algebras and how these are helpful in understanding both the structure of inseparable maps, as well as group-scheme actions on varieties.<br />
<br />
[[File:Prime_Characteristic.jpg|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Wendy Cheng'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Introduction to Boij-S&#246;derberg Theory<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Boij-S&#246;derberg theory describes the Betti diagrams of graded modules over the polynomial ring, up to multiplication by a rational number. Analog Eisenbud-Schreyer theory describes the cohomology tables of vector bundles on projective spaces up to rational multiple. We give an introduction and survey of these newly developed areas.<br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Let [X/G] be a stack which is a global quotient of a manifold X by a finite group G. There is a way to construct an orbifold singular cohomology ring. It is the correct generalization of singular cohomology of a topological space, because it coincides with the singular cohomology of a crepant resolution of the quotient space X/G. I will compute several example to explain this. Moreover, (orbifold) singular cohomology ring of a space should corresponds to the (orbifold) Hochschild cohomolgy ring of its mirror if you believe Homological Mirror Symmetry. I will briefly compare these two sides of Homological Mirror Symmetry by computing concrete examples.<br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=K3_Seminar_Spring_2019&diff=17359K3 Seminar Spring 20192019-04-22T13:29:09Z<p>Drwagner: /* Schedule */</p>
<hr />
<div>'''<br />
'''When:''' Thursday 5-7 pm<br />
<br />
'''Where:''' Van Vleck B135<br />
<br />
'''<br />
<br />
<br />
<br />
== Schedule ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title'''<br />
|-<br />
| bgcolor="#E0E0E0"| March 7<br />
| bgcolor="#C6D46E"| Mao Li<br />
| bgcolor="#BCE2FE"|[[#March 7| Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 14<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#March 14| Elliptic K3 Surfaces]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 28<br />
| bgcolor="#C6D46E"| Zheng Lu<br />
| bgcolor="#BCE2FE"|[[#March 28| Moduli of Stable Sheaves on a K3 Surface]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 4<br />
| bgcolor="#C6D46E"| Canberk Irimagzi<br />
| bgcolor="#BCE2FE"|[[#April 4| Fourier-Mukai Transforms]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 11<br />
| bgcolor="#C6D46E"| Moisés Herradón Cueto<br />
| bgcolor="#BCE2FE"|[[#April 11| Cohomology of Complex K3 Surfaces and the Global Torelli Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 23<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#April 23| Derived Categories of K3 Surfaces]]<br />
|}<br />
</center><br />
<br />
== March 7 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Mao Li'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|}<br />
</center><br />
<br />
== March 14 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Elliptic K3 Surfaces<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zheng Lu'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Moduli of Stable Sheaves on a K3 Surface<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Canberk Irimagzi'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Fourier-Mukai Transforms<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will describe Chow theoretic correspondences as a motivation to derived correspondences. We will then define integral functors on derived categories. The dual abelian variety will be given as a moduli space in terms of its functor of points, leading us to a definition of the universal Poincaré bundle on $A \times \hat{A}$. We will look at the integral transform from $D(A)$ to $D(\hat{A})$ induced by the Poincaré bundle. Cohomology of the Poincaré bundle will be stated and used for the computation of the $K$-theoretic Fourier-Mukai transform on elliptic curves. With the help of the base change theorem, we will describe the Fourier-Mukai duals of homogeneous line bundles on $A$. For an elliptic curve $E$, we will establish the equivalence between<br />
<br />
1. the abelian category of semistable bundles of slope 0 on $E$, and <br />
<br />
2. the abelian category of coherent torsion sheaves on $E$. <br />
<br />
Simple and indecomposable objects of these categories will be described (with the help of the structure theorem of PIDs) and we will relate this picture to Atiyah’s classification of the indecomposable vector bundles of degree 0.<br />
<br />
|} <br />
</center><br />
<br />
== April 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Moisés Herradón Cueto'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Cohomology of Complex K3 Surfaces and the Global Torelli Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Derived Categories of K3 Surfaces<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Contact Info ==<br />
<br />
To get on our mailing list, please contact<br />
<br />
[mailto:irimagzi@wisc.edu Canberk Irimagzi]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=K3_Seminar_Spring_2019&diff=17358K3 Seminar Spring 20192019-04-22T13:28:59Z<p>Drwagner: /* April 25 */</p>
<hr />
<div>'''<br />
'''When:''' Thursday 5-7 pm<br />
<br />
'''Where:''' Van Vleck B135<br />
<br />
'''<br />
<br />
<br />
<br />
== Schedule ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title'''<br />
|-<br />
| bgcolor="#E0E0E0"| March 7<br />
| bgcolor="#C6D46E"| Mao Li<br />
| bgcolor="#BCE2FE"|[[#March 7| Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 14<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#March 14| Elliptic K3 Surfaces]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 28<br />
| bgcolor="#C6D46E"| Zheng Lu<br />
| bgcolor="#BCE2FE"|[[#March 28| Moduli of Stable Sheaves on a K3 Surface]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 4<br />
| bgcolor="#C6D46E"| Canberk Irimagzi<br />
| bgcolor="#BCE2FE"|[[#April 4| Fourier-Mukai Transforms]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 11<br />
| bgcolor="#C6D46E"| Moisés Herradón Cueto<br />
| bgcolor="#BCE2FE"|[[#April 11| Cohomology of Complex K3 Surfaces and the Global Torelli Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 23<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#April 25| Derived Categories of K3 Surfaces]]<br />
|}<br />
</center><br />
<br />
== March 7 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Mao Li'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|}<br />
</center><br />
<br />
== March 14 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Elliptic K3 Surfaces<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zheng Lu'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Moduli of Stable Sheaves on a K3 Surface<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Canberk Irimagzi'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Fourier-Mukai Transforms<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will describe Chow theoretic correspondences as a motivation to derived correspondences. We will then define integral functors on derived categories. The dual abelian variety will be given as a moduli space in terms of its functor of points, leading us to a definition of the universal Poincaré bundle on $A \times \hat{A}$. We will look at the integral transform from $D(A)$ to $D(\hat{A})$ induced by the Poincaré bundle. Cohomology of the Poincaré bundle will be stated and used for the computation of the $K$-theoretic Fourier-Mukai transform on elliptic curves. With the help of the base change theorem, we will describe the Fourier-Mukai duals of homogeneous line bundles on $A$. For an elliptic curve $E$, we will establish the equivalence between<br />
<br />
1. the abelian category of semistable bundles of slope 0 on $E$, and <br />
<br />
2. the abelian category of coherent torsion sheaves on $E$. <br />
<br />
Simple and indecomposable objects of these categories will be described (with the help of the structure theorem of PIDs) and we will relate this picture to Atiyah’s classification of the indecomposable vector bundles of degree 0.<br />
<br />
|} <br />
</center><br />
<br />
== April 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Moisés Herradón Cueto'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Cohomology of Complex K3 Surfaces and the Global Torelli Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 23 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Derived Categories of K3 Surfaces<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Contact Info ==<br />
<br />
To get on our mailing list, please contact<br />
<br />
[mailto:irimagzi@wisc.edu Canberk Irimagzi]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=K3_Seminar_Spring_2019&diff=17357K3 Seminar Spring 20192019-04-22T13:28:40Z<p>Drwagner: /* April 11 */</p>
<hr />
<div>'''<br />
'''When:''' Thursday 5-7 pm<br />
<br />
'''Where:''' Van Vleck B135<br />
<br />
'''<br />
<br />
<br />
<br />
== Schedule ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title'''<br />
|-<br />
| bgcolor="#E0E0E0"| March 7<br />
| bgcolor="#C6D46E"| Mao Li<br />
| bgcolor="#BCE2FE"|[[#March 7| Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 14<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#March 14| Elliptic K3 Surfaces]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 28<br />
| bgcolor="#C6D46E"| Zheng Lu<br />
| bgcolor="#BCE2FE"|[[#March 28| Moduli of Stable Sheaves on a K3 Surface]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 4<br />
| bgcolor="#C6D46E"| Canberk Irimagzi<br />
| bgcolor="#BCE2FE"|[[#April 4| Fourier-Mukai Transforms]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 11<br />
| bgcolor="#C6D46E"| Moisés Herradón Cueto<br />
| bgcolor="#BCE2FE"|[[#April 11| Cohomology of Complex K3 Surfaces and the Global Torelli Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 23<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#April 25| Derived Categories of K3 Surfaces]]<br />
|}<br />
</center><br />
<br />
== March 7 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Mao Li'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|}<br />
</center><br />
<br />
== March 14 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Elliptic K3 Surfaces<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zheng Lu'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Moduli of Stable Sheaves on a K3 Surface<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Canberk Irimagzi'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Fourier-Mukai Transforms<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will describe Chow theoretic correspondences as a motivation to derived correspondences. We will then define integral functors on derived categories. The dual abelian variety will be given as a moduli space in terms of its functor of points, leading us to a definition of the universal Poincaré bundle on $A \times \hat{A}$. We will look at the integral transform from $D(A)$ to $D(\hat{A})$ induced by the Poincaré bundle. Cohomology of the Poincaré bundle will be stated and used for the computation of the $K$-theoretic Fourier-Mukai transform on elliptic curves. With the help of the base change theorem, we will describe the Fourier-Mukai duals of homogeneous line bundles on $A$. For an elliptic curve $E$, we will establish the equivalence between<br />
<br />
1. the abelian category of semistable bundles of slope 0 on $E$, and <br />
<br />
2. the abelian category of coherent torsion sheaves on $E$. <br />
<br />
Simple and indecomposable objects of these categories will be described (with the help of the structure theorem of PIDs) and we will relate this picture to Atiyah’s classification of the indecomposable vector bundles of degree 0.<br />
<br />
|} <br />
</center><br />
<br />
== April 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Moisés Herradón Cueto'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Cohomology of Complex K3 Surfaces and the Global Torelli Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Moisés Herradón Cueto<br />
'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Derived Categories of K3 Surfaces<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Contact Info ==<br />
<br />
To get on our mailing list, please contact<br />
<br />
[mailto:irimagzi@wisc.edu Canberk Irimagzi]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=K3_Seminar_Spring_2019&diff=17356K3 Seminar Spring 20192019-04-22T13:28:25Z<p>Drwagner: /* Schedule */</p>
<hr />
<div>'''<br />
'''When:''' Thursday 5-7 pm<br />
<br />
'''Where:''' Van Vleck B135<br />
<br />
'''<br />
<br />
<br />
<br />
== Schedule ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title'''<br />
|-<br />
| bgcolor="#E0E0E0"| March 7<br />
| bgcolor="#C6D46E"| Mao Li<br />
| bgcolor="#BCE2FE"|[[#March 7| Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 14<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#March 14| Elliptic K3 Surfaces]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 28<br />
| bgcolor="#C6D46E"| Zheng Lu<br />
| bgcolor="#BCE2FE"|[[#March 28| Moduli of Stable Sheaves on a K3 Surface]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 4<br />
| bgcolor="#C6D46E"| Canberk Irimagzi<br />
| bgcolor="#BCE2FE"|[[#April 4| Fourier-Mukai Transforms]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 11<br />
| bgcolor="#C6D46E"| Moisés Herradón Cueto<br />
| bgcolor="#BCE2FE"|[[#April 11| Cohomology of Complex K3 Surfaces and the Global Torelli Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 23<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#April 25| Derived Categories of K3 Surfaces]]<br />
|}<br />
</center><br />
<br />
== March 7 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Mao Li'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|}<br />
</center><br />
<br />
== March 14 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Elliptic K3 Surfaces<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 28 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Zheng Lu'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Moduli of Stable Sheaves on a K3 Surface<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 4 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Canberk Irimagzi'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Fourier-Mukai Transforms<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will describe Chow theoretic correspondences as a motivation to derived correspondences. We will then define integral functors on derived categories. The dual abelian variety will be given as a moduli space in terms of its functor of points, leading us to a definition of the universal Poincaré bundle on $A \times \hat{A}$. We will look at the integral transform from $D(A)$ to $D(\hat{A})$ induced by the Poincaré bundle. Cohomology of the Poincaré bundle will be stated and used for the computation of the $K$-theoretic Fourier-Mukai transform on elliptic curves. With the help of the base change theorem, we will describe the Fourier-Mukai duals of homogeneous line bundles on $A$. For an elliptic curve $E$, we will establish the equivalence between<br />
<br />
1. the abelian category of semistable bundles of slope 0 on $E$, and <br />
<br />
2. the abelian category of coherent torsion sheaves on $E$. <br />
<br />
Simple and indecomposable objects of these categories will be described (with the help of the structure theorem of PIDs) and we will relate this picture to Atiyah’s classification of the indecomposable vector bundles of degree 0.<br />
<br />
|} <br />
</center><br />
<br />
== April 11 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Cohomology of Complex K3 Surfaces and the Global Torelli Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 25 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Moisés Herradón Cueto<br />
'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Derived Categories of K3 Surfaces<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Contact Info ==<br />
<br />
To get on our mailing list, please contact<br />
<br />
[mailto:irimagzi@wisc.edu Canberk Irimagzi]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17318Graduate Algebraic Geometry Seminar2019-04-15T18:09:44Z<p>Drwagner: /* Spring 2019 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[#March 27| Quadratic Forms]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[#April 3| Riemann-Roch and Abel-Jacobi theory on a finite graph]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[#April 17| Inseparable maps and quotients of varieties]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[#April 24| Introduction to Boij-S&#246;derberg Theory]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
<br /><br />
[[File:Dg-meme.png|center]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
<br /><br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
<br/><br />
[[File:Dial-M-For-Elliptic.png|400px|center]]<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Quadratic Forms<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Starting from the classical story of binary quadratic forms, we'll move on to more modern aspects of the theory of quadratic forms and try to make sense of some mass formulas.<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Riemann-Roch and Abel-Jacobi theory on a finite graph<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A finite graph is like a Riemann surface, or a smooth projective curve. Following the paper by Baker and Norine, we will investigate linear equivalence of divisors on graphs, the Jacobian of a graph, and a combinatorial interpretation of these as a chip firing game.<br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Kindergarten GAGA<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Join me in regressing to an infantile state as we discuss Serre's 1956 paper ''Algebraic geometry and analytic geometry'', widely considered to be the most influential work ever authored by a mathematician under the age of five. We will define the notion of an analytic space, construct the analytic space associated to any algebraic variety over <math>\mathbb{C}</math>, and examine the relationships between the two, including the equivalence between coherent algebraic sheaves and coherent analytic sheaves in the projective case.<br />
<br />
[[File:Badromancehof.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Inseparable maps and quotients of varieties<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: TBA<br />
<br />
[[File:Prime_Characteristic.jpg|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Wendy Cheng'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Introduction to Boij-S&#246;derberg Theory<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17317Graduate Algebraic Geometry Seminar2019-04-15T18:09:18Z<p>Drwagner: /* April 24 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[#March 27| Quadratic Forms]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[#April 3| Riemann-Roch and Abel-Jacobi theory on a finite graph]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[#April 17| Inseparable maps and quotients of varieties]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
<br /><br />
[[File:Dg-meme.png|center]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
<br /><br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
<br/><br />
[[File:Dial-M-For-Elliptic.png|400px|center]]<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Quadratic Forms<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Starting from the classical story of binary quadratic forms, we'll move on to more modern aspects of the theory of quadratic forms and try to make sense of some mass formulas.<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Riemann-Roch and Abel-Jacobi theory on a finite graph<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A finite graph is like a Riemann surface, or a smooth projective curve. Following the paper by Baker and Norine, we will investigate linear equivalence of divisors on graphs, the Jacobian of a graph, and a combinatorial interpretation of these as a chip firing game.<br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Kindergarten GAGA<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Join me in regressing to an infantile state as we discuss Serre's 1956 paper ''Algebraic geometry and analytic geometry'', widely considered to be the most influential work ever authored by a mathematician under the age of five. We will define the notion of an analytic space, construct the analytic space associated to any algebraic variety over <math>\mathbb{C}</math>, and examine the relationships between the two, including the equivalence between coherent algebraic sheaves and coherent analytic sheaves in the projective case.<br />
<br />
[[File:Badromancehof.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Inseparable maps and quotients of varieties<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: TBA<br />
<br />
[[File:Prime_Characteristic.jpg|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Wendy Cheng'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Introduction to Boij-S&#246;derberg Theory<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17315Graduate Algebraic Geometry Seminar2019-04-15T17:42:01Z<p>Drwagner: /* April 24 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[#March 27| Quadratic Forms]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[#April 3| Riemann-Roch and Abel-Jacobi theory on a finite graph]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[#April 17| Inseparable maps and quotients of varieties]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
<br /><br />
[[File:Dg-meme.png|center]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
<br /><br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
<br/><br />
[[File:Dial-M-For-Elliptic.png|400px|center]]<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Quadratic Forms<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Starting from the classical story of binary quadratic forms, we'll move on to more modern aspects of the theory of quadratic forms and try to make sense of some mass formulas.<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Riemann-Roch and Abel-Jacobi theory on a finite graph<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A finite graph is like a Riemann surface, or a smooth projective curve. Following the paper by Baker and Norine, we will investigate linear equivalence of divisors on graphs, the Jacobian of a graph, and a combinatorial interpretation of these as a chip firing game.<br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Kindergarten GAGA<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: Join me in regressing to an infantile state as we discuss Serre's 1956 paper ''Algebraic geometry and analytic geometry'', widely considered to be the most influential work ever authored by a mathematician under the age of five. We will define the notion of an analytic space, construct the analytic space associated to any algebraic variety over <math>\mathbb{C}</math>, and examine the relationships between the two, including the equivalence between coherent algebraic sheaves and coherent analytic sheaves in the projective case.<br />
<br />
[[File:Badromancehof.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Inseparable maps and quotients of varieties<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: TBA<br />
<br />
[[File:Prime_Characteristic.jpg|500px|center]]<br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Wendy Cheng'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Introduction to Boij-Soderberg Theory<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17052Graduate Algebraic Geometry Seminar2019-02-27T15:10:33Z<p>Drwagner: /* February 13 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
<br /><br />
[[File:Dg-meme.png|center]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
<br /><br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17051Graduate Algebraic Geometry Seminar2019-02-27T15:10:13Z<p>Drwagner: /* February 27 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
<br /><br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17050Graduate Algebraic Geometry Seminar2019-02-27T15:09:12Z<p>Drwagner: /* February 27 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
<br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17049Graduate Algebraic Geometry Seminar2019-02-27T15:09:01Z<p>Drwagner: /* February 27 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
[[File:Sun_woo_baker.png|500px|center]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17048Graduate Algebraic Geometry Seminar2019-02-27T15:08:33Z<p>Drwagner: /* February 27 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
[[File:Sun_woo_baker.png|500px]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17047Graduate Algebraic Geometry Seminar2019-02-27T15:08:15Z<p>Drwagner: /* February 27 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
[[File:Sun_woo_baker.png|400px]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=17046Graduate Algebraic Geometry Seminar2019-02-27T15:06:15Z<p>Drwagner: /* February 27 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Baker’s Theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Mason's Conjectures and Chow Rings of Matroids]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Dial M_1,1 for moduli]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Wendy Cheng<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A ring is called catenary if for any pair of prime ideals P contained in Q, all saturated chains of prime ideals between P and Q have the same length.<br />
In this talk, I will introduce the necessary background about noncatenary rings and completions of local (Noetherian) domains, as well as the relevant history. Then, I will give the characterization of completions of noncatenary local domains and noncatenary local UFDs, which I will use to describe examples of very strange rings.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Baker's Theorem<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: As a follow up talk to last semester, I will state and prove Baker’s theorem, a classical theorem which uses Newton Polygons to count the genus of a given curve. I will also briefly sketch how one can use Newton polygons to understand resolution of singularities of a given curve over valuation rings.<br />
[[File:Sun_woo_baker.png]]<br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Mason's Conjectures and Chow Rings of Matroids<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: A matroid is a combinatorial structure that abstracts many different notions of independence, including linear independence in a vector space. Mason's Conjectures are a series of three increasingly strong inequalities on certain numerical invariants of matroids, the weakest of which resisted proof for over 40 years until its resolution in 2015. However, in the years since, all of Mason's conjectures have become theorems!<br />
<br />
In this talk, we will introduce matroids and the Chow ring of a matroid, the amazing algebraic gadget used to prove Mason's first conjecture. Finally, outline the proof of Mason's second conjecture (work of our very own Botong Wang & coauthors).<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Dial M_1,1 for moduli<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We will speculate wildly about what kind of object the moduli space of elliptic curves should be. I don't know what a stack is, and I promise not to try to define one.<br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=File:Sun_woo_baker.png&diff=17045File:Sun woo baker.png2019-02-27T15:05:37Z<p>Drwagner: </p>
<hr />
<div></div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=16922AMS Student Chapter Seminar2019-02-14T01:00:50Z<p>Drwagner: </p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu]<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Spring 2019 ==<br />
<br />
=== February 6, Xiao Shen (in VV B139)===<br />
<br />
Title: Limit Shape in last passage percolation<br />
<br />
Abstract: Imagine the following situation, attached to each point on the integer lattice Z^2 there is an arbitrary amount of donuts. Fix x and y in Z^2, if you get to eat all the donuts along an up-right path between these two points, what would be the maximum amount of donuts you can get? This model is often called last passage percolation, and I will discuss a classical result about its scaling limit: what happens if we zoom out and let the distance between x and y tend to infinity.<br />
<br />
=== February 13, Michel Alexis (in VV B139)===<br />
<br />
Title: An instructive yet useless theorem about random Fourier Series<br />
<br />
Abstract: Consider a Fourier series with random, symmetric, independent coefficients. With what probability is this the Fourier series of a continuous function? An <math>L^{p}</math> function? A surprising result is the Billard theorem, which says such a series results almost surely from an <math>L^{\infty}</math> function if and only if it results almost surely from a continuous function. Although the theorem in of itself is kind of useless in of itself, its proof is instructive in that we will see how, via the principle of reduction, one can usually just pretend all symmetric random variables are just coin flips (Bernoulli trials with outcomes <math>\pm 1</math>).<br />
<br />
=== February 20, Geoff Bentsen ===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== February 27, TBD ===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== March 6, Working Group to establish an Association of Mathematics Graduate Students ===<br />
<br />
Title: Math and Government<br />
<br />
Abstract: TBD<br />
<br />
=== March 13, TBD ===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== March 26 (Prospective Student Visit Day), Multiple Speakers ===<br />
<br />
====Eva Elduque====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
====Rajula Srivastava====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
====Soumya Sankar====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
====[Insert Speaker]====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
====[Insert Speaker]====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
====[Insert Speaker]====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
====[Insert Speaker]====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
====[Insert Speaker]====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
====[Insert Speaker]====<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== April 3, TBD ===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== April 10, TBD ===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== April 17, Hyun-Jong ===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== April 24, TBD ===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16921Graduate Algebraic Geometry Seminar2019-02-13T14:34:48Z<p>Drwagner: /* February 13 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16920Graduate Algebraic Geometry Seminar2019-02-13T14:34:31Z<p>Drwagner: /* February 13 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
<center>[[File:Dg-meme.png]]</center><br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16919Graduate Algebraic Geometry Seminar2019-02-13T14:34:00Z<p>Drwagner: /* February 13 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: DG potpourri<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16918Graduate Algebraic Geometry Seminar2019-02-13T14:33:21Z<p>Drwagner: /* February 13 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Classification of TFT's<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.png]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16917Graduate Algebraic Geometry Seminar2019-02-13T14:32:52Z<p>Drwagner: /* February 13 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Classification of TFT's<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: I will explain how differential graded categories made their way into AG as a way to solve some of the inadequacies of the ordinary derived category. We will then give examples of the utility of DG techniques. <br />
[[File:Dg-meme.jpg]]<br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=File:Dg-meme.png&diff=16916File:Dg-meme.png2019-02-13T14:32:18Z<p>Drwagner: </p>
<hr />
<div></div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16915Graduate Algebraic Geometry Seminar2019-02-13T14:28:32Z<p>Drwagner: /* Spring 2019 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| DG potpourri]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Classification of TFT's<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16907Graduate Algebraic Geometry Seminar2019-02-12T21:17:16Z<p>Drwagner: /* May 1 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| Classification of TFT's]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Classification of TFT's<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Shengyuan Huang'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Orbifold Singular Cohomology<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar&diff=16906Graduate Algebraic Geometry Seminar2019-02-12T21:16:57Z<p>Drwagner: /* Spring 2019 */</p>
<hr />
<div>'''<br />
'''When:''' Wednesdays 4:25pm<br />
<br />
'''Where:''' Van Vleck B317 (Spring 2019)<br />
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]<br />
<br />
'''Who:''' All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.<br />
<br />
'''Why:''' The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Talks are typically accessible to beginning graduate students and take many different forms. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Friday Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.<br />
<br />
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@lists.wisc.edu. The list registration page is [https://admin.lists.wisc.edu/index.php?p=11&l=gags here].<br />
'''<br />
<br />
== Give a talk! ==<br />
We need volunteers to give talks this semester. If you're interested contact [mailto:cbooms@wisc.edu Caitlyn] or [mailto:drwagner@math.wisc.edu David], or just add yourself to the list (though in that case we might move your talk later without your permission). Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.<br />
<br />
== Being an audience member ==<br />
The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:<br />
* Do Not Speak For/Over the Speaker: <br />
* Ask Questions Appropriately: <br />
<br />
==The List of Topics that we Made February 2018==<br />
<br />
On February 21st of the Month of February of The 2018th Year of the Seventh Age of The Sun, the People Present at GAGS Compiled Ye Followinge Liste of Topics They Wished to Hear Aboute:<br />
<br />
Feel free to edit the list and/or add references to learn this stuff from. Since then, we've succeeded in talking about some of these, which doesn't mean there shouldn't be another talk. Ask around or look at old semester's websites.<br />
<br />
* Schubert Calculus, aka how many lines intersect four given lines in three-dimensional space? The answer to this question is prettiest when you think about it as a problem of intersecting subvarieties in the Grassmanian. ''What is the Grassmanian, you say?'' That's probably a talk we should have every year, so you should give it!<br />
<br />
* Kindergarten GAGA. GAGA stands for Algebraic Geometry - Analytic Geometry. Serre wrote a famous paper explaining how the two are related, and you could give an exposition suitable to kindergardeners.<br />
<br />
* Katz and Mazur explanation of what a modular form is. What is it?<br />
<br />
* Kindergarten moduli of curves.<br />
<br />
* What is a dualizing sheaf? What is a dualizing complex? What is Serre duality? What is local duality? Can local duality help us understand Serre duality?<br />
<br />
* Generalizations of Riemann - Roch. (Grothendieck - Riemann - Roch? Hirzebruch - Riemann - Roch?)<br />
<br />
* Hodge theory for babies<br />
<br />
* What is a Néron model?<br />
<br />
* What is a crystal? What does it have to do with D-modules? [http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf Here's an encouragingly short set of notes on it].<br />
<br />
* What and why is a dessin d'enfants?<br />
<br />
* DG Schemes.<br />
<br />
<br />
==Ed Dewey's Wish List Of Olde==<br />
<br />
Back in the day Ed and Nathan made this list of topics they wanted to hear. They all sound super duper cool, but it's also true that they had many years of AG behind their backs, so this list might not be very representative of what the GAGS audience wants to hear bout.<br />
<br />
Here are the topics we're '''DYING''' to learn about! Please consider looking into one of these topics and giving one or two GAGS talks.<br />
<br />
===Specifically Vague Topics===<br />
* D-modules 101: basics of D-modules, equivalence between left and right D-modules, pullbacks, pushforwards, maybe the Gauss-Manin Connection. Claude Sabbah's introduction to the subject could be a good place to start.<br />
<br />
* Sheaf operations on D-modules (the point is that then you can get a Fourier-Mukai transform between certain O-modules and certain D-modules, which is more or less how geometric Langlands is supposed to work)<br />
<br />
===Famous Theorems===<br />
<br />
===Interesting Papers & Books===<br />
* ''Symplectic structure of the moduli space of sheaves on an abelian or K3 surface'' - Shigeru Mukai.<br />
<br />
* ''Residues and Duality'' - Robin Hatshorne.<br />
** Have you heard of Serre Duality? Would you like to really understand the nuts and bolts of it and its generalizations? If so this book is for you. (You wouldn't need to read the whole book to give a talk ;).)<br />
<br />
* ''Coherent sheaves on P^n and problems in linear algebra'' - A. A. Beilinson.<br />
** In this two page paper constructs the semi-orthogonal decomposition of the derived category of coherent sheaves on projective space. (This topic is very important, and there are a ton of other resources for this result and the general theory of derived categories.)<br />
<br />
* ''Frobenius splitting and cohomology vanishing for Schubert varieties'' - V.B. Mehta and A. Ramanathan.<br />
** In characteristic p the fact that (x+y)^p=x^p+y^p means that one has the Frobenius morphism, which sends f to f^p. In this paper the authors introduce the notion of what it means for a variety to be Frobenius split, and use this to prove certain cohomologcal vanishing results for Schubert varieties. Since then Frobenius splitting -- and its related cousins (F-regularity, strong F-regularity, F-purity, etc.) have played large roles in geometry and algebra in characteristic p. This is a good place to get a sense for what kicked all this stuff off! <br />
<br />
* ''Schubert Calculus'' - S. L. Kleiman and Dan Laksov.<br />
** An introduction to Schubert calculus suitable for those of all ages. I am told the paper essentially only uses linear algebra!<br />
<br />
* ''Rational Isogenies of Prime Degree'' - Barry Mazur.<br />
** In this paper Mazur classifies all isogenies of rational elliptic curves of prime order. As a result of this he deduces his famous result that the torsion subgroup of an elliptic curve (over Q) is one of 15 abelian groups. This definitely stares into the land of number theory, but certainly would still be of interest to many.<br />
<br />
* ''Esquisse d’une programme'' - Alexander Grothendieck.<br />
** Originating from a grant proposal in the mid 1980's this famous paper outlines a tantalizing research program, which seeks to tie numerous different areas of math (algebraic geometry, Teichmuller theory, Galois theory, etc.) together. This is where Grothendieck introduced his famous Lego game and dessin d'enfant. While just a research proposal this paper has seemingly inspired a ton of cool math, and will allow you to "blow peoples’ minds". (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Géométrie algébraique et géométrie analytique'' - J.P. Serre.<br />
** A projective variety X over the complex numbers has two lives, an algebraic and an analytic, depending on which topology one wishes to work with. That is one can think about X as a complex manifold and work with holomorphic functions or as an algebraic variety and work with regular functions. Hence to any complex projective variety we have two sheaf theories and as a result two cohomology theories. In this famous paper Serre compares these two and shows they are in fact the same. (''Note: This is a super fundamental result that is used all the time; normally in the following way: Uhh... What do you mean by cohomology? Well by GAGA or something it doesn't really mater.) (The original paper is in French, but there are English translations out there.)<br />
<br />
* ''Limit linear series: Basic theory''- David Eisenbud and Joe Harris.<br />
** One of the more profitable tools -- especially when studying moduli spaces -- in a geometers tool box is the theory of degenerations. However, sometimes we care about more than just the variety we are degenerating and want to keep track of things like vector/line bundles. In this paper Eisenbud and Harris develop the theory of degenerating a curve together with a linear series. From this they prove a ton of cool results: M_g is of general type for g>24, Brill-Noether theory, etc.<br />
<br />
* ''Picard Groups of Moduli Problems'' - David Mumford.<br />
** This paper is essentially the origin of algebraic stacks.<br />
<br />
* ''The Structure of Algebraic Threefolds: An Introduction to Mori's Program'' - Janos Kollar<br />
** This paper is an introduction to Mori's famous ``minimal model'' program, which is a far reaching program seeking to understand the birational geometry of higher dimensional varieties. <br />
<br />
* ''Cayley-Bacharach Formulas'' - Qingchun Ren, Jürgen Richter-Gebert, Bernd Sturmfels.<br />
** A classical result we all learn in a first semester of algebraic geometry is that 5 points in the plane (in general position) determine a unique plane conic. One can similarly show that 9 (general) points in the plane determine a unique plane cubic curve. This paper tries to answer the question: ``What is equation for this cubic curve?''.<br />
<br />
* ''On Varieties of Minimal Degree (A Centennial Approach)'' - David Eisenbud and Joe Harris.<br />
** Suppose X is a projective variety embedded in projective space so that X is not contained in any hyperplane. By projecting from general points one can see that the degree of X is at least codim(X)+1. This paper discusses the classification of varieties that achieve this lower degree bound i.e. varieties of minimal degree. This topic is quite classical and the paper seems to contain a nice mixture of classical and modern geometry.<br />
<br />
* ''The Gromov-Witten potential associated to a TCFT'' - Kevin J. Costello.<br />
** This seems incredibly interesting, but fairing warning this paper has been described as ''highly technical'', which considering it uses A-infinity algebras and the derived category of a Calabi-Yau seems like a reasonable description. (This paper may be covered in Caldararu's Spring 2017 topics course.)<br />
__NOTOC__<br />
<br />
== Spring 2019 ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''<br />
|-<br />
| bgcolor="#E0E0E0"| February 6<br />
| bgcolor="#C6D46E"| Vlad Sotirov<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 6| Heisenberg Groups and the Fourier Transform]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 13<br />
| bgcolor="#C6D46E"| David Wagner<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| Classification of TFT's]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 20<br />
| bgcolor="#C6D46E"| Caitlyn Booms<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Completions of Noncatenary Local Domains and UFDs]]<br />
|-<br />
| bgcolor="#E0E0E0"| February 27<br />
| bgcolor="#C6D46E"| Sun Woo Park<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 6<br />
| bgcolor="#C6D46E"| Connor Simpson<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 13<br />
| bgcolor="#C6D46E"| Brandon Boggess<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 27<br />
| bgcolor="#C6D46E"| Solly Parenti<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 27| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 3<br />
| bgcolor="#C6D46E"| Colin Crowley<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 10<br />
| bgcolor="#C6D46E"| Alex Hof<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Kindergarten GAGA]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 17<br />
| bgcolor="#C6D46E"| Soumya Sankar<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 17| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| April 24<br />
| bgcolor="#C6D46E"| Name<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| Title]]<br />
|-<br />
| bgcolor="#E0E0E0"| May 1<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| Orbifold Singular Cohomology]]<br />
|}<br />
</center><br />
<br />
== February 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Vladimir Sotirov'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Heisenberg Groups and the Fourier Transform<br />
|-<br />
| bgcolor="#BCD2EE" | <br />
Abstract: I will discuss the relationship between Fourier transforms and the Heisenberg groups, with a view toward the discussion of line bundles on complex tori that appears in Polishchuk's book Abelian Varieties, Theta functions, and the Fourier transform.<br />
<br />
|} <br />
</center><br />
<br />
== February 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''David Wagner'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Classification of TFT's<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== February 20 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: Completions of Noncatenary Local Domains and UFDs<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: We find necessary and sufficient conditions for a complete local ring to be the completion of a noncatenary local (Noetherian) domain, as well as necessary and sufficient conditions for it to be the completion of a noncatenary local (Noetherian) unique factorization domain. We use our first result to demonstrate a large class of quasi-excellent domains that are not excellent, as well as a large class of catenary domains that are not universally catenary. We use our second result to find a larger class of noncatenary local UFDs than was previously known, and we show that there is no bound on how noncatenary a UFD can be.<br />
|} <br />
</center><br />
<br />
== February 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Sun Woo Park'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 6 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title:<br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== March 13 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Brandon Boggess'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== March 27 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Solly Parenti'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract:<br />
|} <br />
</center><br />
<br />
== April 3 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 10 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Hof'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 17 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Soumya Sankar'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== April 24 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== May 1 ==<br />
<center><br />
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"<br />
|-<br />
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Name'''<br />
|-<br />
| bgcolor="#BCD2EE" | Title: <br />
|-<br />
| bgcolor="#BCD2EE" | Abstract: <br />
|} <br />
</center><br />
<br />
== Organizers' Contact Info ==<br />
<br />
[https://sites.google.com/wisc.edu/cbooms/ Caitlyn Booms]<br />
<br />
[http://www.math.wisc.edu/~drwagner/ David Wagner]<br />
<br />
[https://www.math.wisc.edu/~moises/ Moisés Herradón Cueto]<br />
<br />
== Past Semesters ==<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2018 Fall 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2018 Spring 2018]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2017 Fall 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2017 Spring 2017]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2016 Fall 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2016 Spring 2016]<br />
<br />
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_(Fall_2015) Fall 2015]</div>Drwagnerhttps://www.math.wisc.edu/wiki/index.php?title=K3_Seminar_Spring_2019&diff=16844K3 Seminar Spring 20192019-02-06T16:24:03Z<p>Drwagner: </p>
<hr />
<div>'''<br />
'''When:''' Thursday 5-7 pm<br />
<br />
'''Where:''' Van Vleck TBA<br />
<br />
'''<br />
<br />
<br />
<br />
== Schedule ==<br />
<br />
<center><br />
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"<br />
|-<br />
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''<br />
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''<br />
| bgcolor="#BCD2EE" width="300" align="center"|'''Title'''<br />
|-<br />
| bgcolor="#E0E0E0"| March 7<br />
| bgcolor="#C6D46E"| Mao Li<br />
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 7| Basics of K3 Surfaces and the Grothendieck-Riemann-Roch theorem]]<br />
|-<br />
| bgcolor="#E0E0E0"| March 14<br />
| bgcolor="#C6D46E"| Shengyuan Huang<br />
| bgcolor="#BCE2FE"