https://www.math.wisc.edu/wiki/api.php?action=feedcontributions&user=Qinli&feedformat=atomUW-Math Wiki - User contributions [en]2019-10-14T06:33:51ZUser contributionsMediaWiki 1.30.1https://www.math.wisc.edu/wiki/index.php?title=PDE_Geometric_Analysis_seminar&diff=18147PDE Geometric Analysis seminar2019-10-11T18:58:02Z<p>Qinli: /* Claude Bardos */</p>
<hr />
<div>The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.<br />
<br />
===[[Previous PDE/GA seminars]]===<br />
===[[Fall 2020-Spring 2021 | Tentative schedule for Fall 2020-Spring 2021]]===<br />
<br />
== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==<br />
<br />
<br />
{| cellpadding="8"<br />
!style="width:20%" align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!style="width:20%" align="left" | host(s)<br />
|- <br />
|Sep 9<br />
| Scott Smith (UW Madison)<br />
|[[#Scott Smith | Recent progress on singular, quasi-linear stochastic PDE ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 14-15<br />
| <br />
|[[ # |AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html ]]<br />
| <br />
|- <br />
|Sep 23<br />
| Son Tu (UW Madison)<br />
|[[#Son Tu | State-Constraint static Hamilton-Jacobi equations in nested domains ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 28-29, VV901<br />
| https://www.ki-net.umd.edu/content/conf?event_id=993<br />
| | Recent progress in analytical aspects of kinetic equations and related fluid models <br />
| <br />
|- <br />
|Oct 7<br />
| Jin Woo Jang (Postech)<br />
|[[#Jin Woo Jang| On a Cauchy problem for the Landau-Boltzmann equation ]]<br />
| Kim<br />
|- <br />
|Oct 14<br />
| Stefania Patrizi (UT Austin)<br />
|[[#Stefania Patrizi | TBA ]]<br />
| Tran<br />
|- <br />
|Oct 21<br />
| Claude Bardos (Université Paris Denis Diderot, France)<br />
|[[#Claude Bardos | From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture ]]<br />
| Li<br />
|- <br />
|Oct 28<br />
| Albert Ai (UW Madison)<br />
|[[#Albert Ai | TBA ]]<br />
| Ifrim<br />
|- <br />
|Nov 4<br />
| Yunbai Cao (UW Madison)<br />
|[[#Yunbai Cao | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Nov 11<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 18<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|-<br />
|Nov 25<br />
| Mathew Langford (UT Knoxville)<br />
|[[#Speaker | TBA ]]<br />
| Angenent<br />
|- <br />
|- <br />
|Feb 17<br />
| Yannick Sire (JHU)<br />
|[[#Yannick Sire (JHU) | TBA ]]<br />
| Tran<br />
|- <br />
|Feb 24<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 2<br />
| Theodora Bourni (UT Knoxville)<br />
|[[#Speaker | TBA ]]<br />
| Angenent<br />
|- <br />
|March 9<br />
| Ian Tice (CMU)<br />
|[[#Ian Tice| TBA ]]<br />
| Kim<br />
|- <br />
|March 16 <br />
| No seminar (spring break)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 23<br />
| Jared Speck (Vanderbilt)<br />
|[[#Jared Speck | TBA ]]<br />
| SCHRECKER<br />
|- <br />
|March 30<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 6<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 13<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 20<br />
| Hyunju Kwon (IAS)<br />
|[[#Hyunju Kwon | TBA ]]<br />
| Kim<br />
|- <br />
|April 27<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Scott Smith===<br />
<br />
Title: Recent progress on singular, quasi-linear stochastic PDE<br />
<br />
Abstract: This talk with focus on quasi-linear parabolic equations with an irregular forcing . These equations are ill-posed in the traditional sense of distribution theory. They require flexibility in the notion of solution as well as new a priori bounds. Drawing on the philosophy of rough paths and regularity structures, we develop the analytic part of a small data solution theory. This is joint work with Felix Otto, Hendrik Weber, and Jonas Sauer.<br />
<br />
<br />
===Son Tu===<br />
<br />
Title: State-Constraint static Hamilton-Jacobi equations in nested domains<br />
<br />
Abstract: We study state-constraint static Hamilton-Jacobi equations in a sequence of domains $\{\Omega_k\}$ in $\mathbb R^n$ such that $\Omega_k \subset \Omega_{k+1}$ for all $k \in \mathbb N$. We obtain rates of convergence of $u_k$, the solution to the state-constraint problem in $\Omega_k$, to $u$, the solution to the corresponding problem in $\Omega=\bigcup_k \Omega_k$. In many cases, the rates obtained are proven to be optimal (it's a joint work with Yeoneung Kim and Hung V. Tran).<br />
<br />
<br />
===Jin Woo Jang===<br />
<br />
Title: On a Cauchy problem for the Landau-Boltzmann equation<br />
<br />
Abstract: In this talk, I will introduce a recent development in the global well-posedness of the Landau equation (1936) in a general smooth bounded domain, which has been a long-outstanding open problem. This work proves the global stability of the Landau equation in an $L^\infty_{x,v}$ framework with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. Our methods consist of the generalization of the well-posedness theory for the kinetic Fokker-Planck equation (HJV-2014, HJJ-2018) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi-Nash-Moser theory for the kinetic Fokker-Planck equations (GIMV-2016) and the Morrey estimates (BCM-1996) to further control the velocity derivatives, which ensures the uniqueness. This is a joint work with Y. Guo, H. J. Hwang, and Z. Ouyang.<br />
<br />
<br />
=== Claude Bardos ===<br />
Title: From the d'Alembert paradox to the 1984 Kato criteria via the 1941 $1/3$ Kolmogorov law and the 1949 Onsager conjecture<br />
<br />
Abstract: Several of my recent contributions, with Marie Farge, Edriss Titi, Emile Wiedemann, Piotr and Agneska Gwiadza, were motivated by the following issues: The role of boundary effect in mathematical theory of fluids mechanic and the similarity, in presence of these effects, of the weak convergence in the zero viscosity limit and the statistical theory of turbulence. As a consequence, I will recall the Onsager conjecture and compare it to the issue of anomalous energy dissipation.<br />
<br />
Then I will give a proof of the local conservation of energy under convenient hypothesis in a domain with boundary and give supplementary condition that imply the global conservation of energy in a domain with boundary and the absence of anomalous energy dissipation in the zero viscosity limit of solutions of the Navier-Stokes equation in the presence of no slip boundary condition.<br />
<br />
Eventually the above results are compared with several forms of a basic theorem of Kato in the presence of a Lipschitz solution of the Euler equations and one may insist on the fact that in such case the the absence of anomalous energy dissipation is {\bf equivalent} to the persistence of regularity in the zero viscosity limit. Eventually this remark contributes to the resolution of the d'Alembert Paradox.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=PDE_Geometric_Analysis_seminar&diff=18146PDE Geometric Analysis seminar2019-10-11T18:57:48Z<p>Qinli: /* Claude Bardos */</p>
<hr />
<div>The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.<br />
<br />
===[[Previous PDE/GA seminars]]===<br />
===[[Fall 2020-Spring 2021 | Tentative schedule for Fall 2020-Spring 2021]]===<br />
<br />
== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==<br />
<br />
<br />
{| cellpadding="8"<br />
!style="width:20%" align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!style="width:20%" align="left" | host(s)<br />
|- <br />
|Sep 9<br />
| Scott Smith (UW Madison)<br />
|[[#Scott Smith | Recent progress on singular, quasi-linear stochastic PDE ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 14-15<br />
| <br />
|[[ # |AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html ]]<br />
| <br />
|- <br />
|Sep 23<br />
| Son Tu (UW Madison)<br />
|[[#Son Tu | State-Constraint static Hamilton-Jacobi equations in nested domains ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 28-29, VV901<br />
| https://www.ki-net.umd.edu/content/conf?event_id=993<br />
| | Recent progress in analytical aspects of kinetic equations and related fluid models <br />
| <br />
|- <br />
|Oct 7<br />
| Jin Woo Jang (Postech)<br />
|[[#Jin Woo Jang| On a Cauchy problem for the Landau-Boltzmann equation ]]<br />
| Kim<br />
|- <br />
|Oct 14<br />
| Stefania Patrizi (UT Austin)<br />
|[[#Stefania Patrizi | TBA ]]<br />
| Tran<br />
|- <br />
|Oct 21<br />
| Claude Bardos (Université Paris Denis Diderot, France)<br />
|[[#Claude Bardos | From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture ]]<br />
| Li<br />
|- <br />
|Oct 28<br />
| Albert Ai (UW Madison)<br />
|[[#Albert Ai | TBA ]]<br />
| Ifrim<br />
|- <br />
|Nov 4<br />
| Yunbai Cao (UW Madison)<br />
|[[#Yunbai Cao | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Nov 11<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 18<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|-<br />
|Nov 25<br />
| Mathew Langford (UT Knoxville)<br />
|[[#Speaker | TBA ]]<br />
| Angenent<br />
|- <br />
|- <br />
|Feb 17<br />
| Yannick Sire (JHU)<br />
|[[#Yannick Sire (JHU) | TBA ]]<br />
| Tran<br />
|- <br />
|Feb 24<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 2<br />
| Theodora Bourni (UT Knoxville)<br />
|[[#Speaker | TBA ]]<br />
| Angenent<br />
|- <br />
|March 9<br />
| Ian Tice (CMU)<br />
|[[#Ian Tice| TBA ]]<br />
| Kim<br />
|- <br />
|March 16 <br />
| No seminar (spring break)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 23<br />
| Jared Speck (Vanderbilt)<br />
|[[#Jared Speck | TBA ]]<br />
| SCHRECKER<br />
|- <br />
|March 30<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 6<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 13<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 20<br />
| Hyunju Kwon (IAS)<br />
|[[#Hyunju Kwon | TBA ]]<br />
| Kim<br />
|- <br />
|April 27<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Scott Smith===<br />
<br />
Title: Recent progress on singular, quasi-linear stochastic PDE<br />
<br />
Abstract: This talk with focus on quasi-linear parabolic equations with an irregular forcing . These equations are ill-posed in the traditional sense of distribution theory. They require flexibility in the notion of solution as well as new a priori bounds. Drawing on the philosophy of rough paths and regularity structures, we develop the analytic part of a small data solution theory. This is joint work with Felix Otto, Hendrik Weber, and Jonas Sauer.<br />
<br />
<br />
===Son Tu===<br />
<br />
Title: State-Constraint static Hamilton-Jacobi equations in nested domains<br />
<br />
Abstract: We study state-constraint static Hamilton-Jacobi equations in a sequence of domains $\{\Omega_k\}$ in $\mathbb R^n$ such that $\Omega_k \subset \Omega_{k+1}$ for all $k \in \mathbb N$. We obtain rates of convergence of $u_k$, the solution to the state-constraint problem in $\Omega_k$, to $u$, the solution to the corresponding problem in $\Omega=\bigcup_k \Omega_k$. In many cases, the rates obtained are proven to be optimal (it's a joint work with Yeoneung Kim and Hung V. Tran).<br />
<br />
<br />
===Jin Woo Jang===<br />
<br />
Title: On a Cauchy problem for the Landau-Boltzmann equation<br />
<br />
Abstract: In this talk, I will introduce a recent development in the global well-posedness of the Landau equation (1936) in a general smooth bounded domain, which has been a long-outstanding open problem. This work proves the global stability of the Landau equation in an $L^\infty_{x,v}$ framework with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. Our methods consist of the generalization of the well-posedness theory for the kinetic Fokker-Planck equation (HJV-2014, HJJ-2018) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi-Nash-Moser theory for the kinetic Fokker-Planck equations (GIMV-2016) and the Morrey estimates (BCM-1996) to further control the velocity derivatives, which ensures the uniqueness. This is a joint work with Y. Guo, H. J. Hwang, and Z. Ouyang.<br />
<br />
<br />
=== Claude Bardos ===<br />
Title: From the d'Alembert paradox to the 1984 Kato criteria via the 1941 $1/3$ Kolmogorov law and the 1949 Onsager conjecture<br />
<br />
Abstract: Several of my recent contributions, with Marie Farge, Edriss Titi, Emile Wiedemann, Piotr and Agneska Gwiadza, were motivated by the following issues:<br />
<br />
The role of boundary effect in mathematical theory of fluids mechanic and the similarity, in presence of these effects, of the weak convergence in the zero viscosity limit and the statistical theory of turbulence. <br />
<br />
As a consequence, I will recall the Onsager conjecture and compare it to the issue of anomalous energy dissipation.<br />
<br />
Then I will give a proof of the local conservation of energy under convenient hypothesis in a domain with boundary and give supplementary condition that imply the global conservation of energy in a domain with boundary and the absence of anomalous energy dissipation in the zero viscosity limit of solutions of the Navier-Stokes equation in the presence of no slip boundary condition.<br />
<br />
Eventually the above results are compared with several forms of a basic theorem of Kato in the presence of a Lipschitz solution of the Euler equations and one may insist on the fact that in such case the the absence of anomalous energy dissipation is {\bf equivalent} to the persistence of regularity in the zero viscosity limit. Eventually this remark contributes to the resolution of the d'Alembert Paradox.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=PDE_Geometric_Analysis_seminar&diff=18145PDE Geometric Analysis seminar2019-10-11T18:57:33Z<p>Qinli: /* Abstracts */</p>
<hr />
<div>The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.<br />
<br />
===[[Previous PDE/GA seminars]]===<br />
===[[Fall 2020-Spring 2021 | Tentative schedule for Fall 2020-Spring 2021]]===<br />
<br />
== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==<br />
<br />
<br />
{| cellpadding="8"<br />
!style="width:20%" align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!style="width:20%" align="left" | host(s)<br />
|- <br />
|Sep 9<br />
| Scott Smith (UW Madison)<br />
|[[#Scott Smith | Recent progress on singular, quasi-linear stochastic PDE ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 14-15<br />
| <br />
|[[ # |AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html ]]<br />
| <br />
|- <br />
|Sep 23<br />
| Son Tu (UW Madison)<br />
|[[#Son Tu | State-Constraint static Hamilton-Jacobi equations in nested domains ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 28-29, VV901<br />
| https://www.ki-net.umd.edu/content/conf?event_id=993<br />
| | Recent progress in analytical aspects of kinetic equations and related fluid models <br />
| <br />
|- <br />
|Oct 7<br />
| Jin Woo Jang (Postech)<br />
|[[#Jin Woo Jang| On a Cauchy problem for the Landau-Boltzmann equation ]]<br />
| Kim<br />
|- <br />
|Oct 14<br />
| Stefania Patrizi (UT Austin)<br />
|[[#Stefania Patrizi | TBA ]]<br />
| Tran<br />
|- <br />
|Oct 21<br />
| Claude Bardos (Université Paris Denis Diderot, France)<br />
|[[#Claude Bardos | From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture ]]<br />
| Li<br />
|- <br />
|Oct 28<br />
| Albert Ai (UW Madison)<br />
|[[#Albert Ai | TBA ]]<br />
| Ifrim<br />
|- <br />
|Nov 4<br />
| Yunbai Cao (UW Madison)<br />
|[[#Yunbai Cao | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Nov 11<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 18<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|-<br />
|Nov 25<br />
| Mathew Langford (UT Knoxville)<br />
|[[#Speaker | TBA ]]<br />
| Angenent<br />
|- <br />
|- <br />
|Feb 17<br />
| Yannick Sire (JHU)<br />
|[[#Yannick Sire (JHU) | TBA ]]<br />
| Tran<br />
|- <br />
|Feb 24<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 2<br />
| Theodora Bourni (UT Knoxville)<br />
|[[#Speaker | TBA ]]<br />
| Angenent<br />
|- <br />
|March 9<br />
| Ian Tice (CMU)<br />
|[[#Ian Tice| TBA ]]<br />
| Kim<br />
|- <br />
|March 16 <br />
| No seminar (spring break)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 23<br />
| Jared Speck (Vanderbilt)<br />
|[[#Jared Speck | TBA ]]<br />
| SCHRECKER<br />
|- <br />
|March 30<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 6<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 13<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 20<br />
| Hyunju Kwon (IAS)<br />
|[[#Hyunju Kwon | TBA ]]<br />
| Kim<br />
|- <br />
|April 27<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Scott Smith===<br />
<br />
Title: Recent progress on singular, quasi-linear stochastic PDE<br />
<br />
Abstract: This talk with focus on quasi-linear parabolic equations with an irregular forcing . These equations are ill-posed in the traditional sense of distribution theory. They require flexibility in the notion of solution as well as new a priori bounds. Drawing on the philosophy of rough paths and regularity structures, we develop the analytic part of a small data solution theory. This is joint work with Felix Otto, Hendrik Weber, and Jonas Sauer.<br />
<br />
<br />
===Son Tu===<br />
<br />
Title: State-Constraint static Hamilton-Jacobi equations in nested domains<br />
<br />
Abstract: We study state-constraint static Hamilton-Jacobi equations in a sequence of domains $\{\Omega_k\}$ in $\mathbb R^n$ such that $\Omega_k \subset \Omega_{k+1}$ for all $k \in \mathbb N$. We obtain rates of convergence of $u_k$, the solution to the state-constraint problem in $\Omega_k$, to $u$, the solution to the corresponding problem in $\Omega=\bigcup_k \Omega_k$. In many cases, the rates obtained are proven to be optimal (it's a joint work with Yeoneung Kim and Hung V. Tran).<br />
<br />
<br />
===Jin Woo Jang===<br />
<br />
Title: On a Cauchy problem for the Landau-Boltzmann equation<br />
<br />
Abstract: In this talk, I will introduce a recent development in the global well-posedness of the Landau equation (1936) in a general smooth bounded domain, which has been a long-outstanding open problem. This work proves the global stability of the Landau equation in an $L^\infty_{x,v}$ framework with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. Our methods consist of the generalization of the well-posedness theory for the kinetic Fokker-Planck equation (HJV-2014, HJJ-2018) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi-Nash-Moser theory for the kinetic Fokker-Planck equations (GIMV-2016) and the Morrey estimates (BCM-1996) to further control the velocity derivatives, which ensures the uniqueness. This is a joint work with Y. Guo, H. J. Hwang, and Z. Ouyang.<br />
<br />
<br />
=== Claude Bardos ===<br />
Title: From the d'Alembert paradox to the 1984 Kato criteria via the 1941 $1/3$ Kolmogorov law and the 1949 Onsager conjecture<br />
<br />
Abstract: Several of my recent contributions, with Marie Farge, Edriss Titi, Emile Wiedemann, Piotr and Agneska Gwiadza, were motivated by the following issues:<br />
<br />
The role of boundary effect in mathematical theory of fluids mechanic and the similarity, in presence of these effects, of the weak convergence in the zero viscosity limit and the statistical theory of turbulence. <br />
<br />
As a consequence.<br />
<br />
<br />
I will recall the Onsager conjecture and compare it to the issue of anomalous energy dissipation.<br />
<br />
Then I will give a proof of the local conservation of energy under convenient hypothesis in a domain with boundary and give supplementary condition that imply the global conservation of energy in a domain with boundary and the absence of anomalous energy dissipation in the zero viscosity limit of solutions of the Navier-Stokes equation in the presence of no slip boundary condition.<br />
<br />
Eventually the above results are compared with several forms of a basic theorem of Kato in the presence of a Lipschitz solution of the Euler equations and one may insist on the fact that in such case the the absence of anomalous energy dissipation is {\bf equivalent} to the persistence of regularity in the zero viscosity limit. Eventually this remark contributes to the resolution of the d'Alembert Paradox.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=18101Applied/ACMS/absF192019-10-04T13:59:36Z<p>Qinli: /* ACMS Abstracts: Fall 2019 */</p>
<hr />
<div>= ACMS Abstracts: Fall 2019 =<br />
<br />
=== Leonardo Andrés Zepeda Núñez ===<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.<br />
<br />
<br />
=== Daniel Floryan (UW-Madison) ===<br />
<br />
Title: Flexible Inertial Swimmers<br />
<br />
Abstract: Inertial swimmers deform their bodies and fins to push against the water and propel themselves forward. The deformation is driven partly by active musculature, and partly by passive elasticity. The interaction between elasticity and hydrodynamics confers features on the swimmers not enjoyed by their rigid friends, for example, boosts in speed when flapping at certain frequencies. We explain the salient features of flexible swimmers by drawing ideas from airfoils, vibrating beams, and flags flapping in the wind. The presence of fluid drag has important consequences. We also explore optimal arrangements of flexibility. (It turns out that nature is quite good.)<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local <br />
region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
=== Mitch Bushuk (GFDL/Princeton) ===<br />
<br />
Title: Arctic Sea Ice Predictability in a Changing Cryosphere<br />
<br />
Abstract: Forty years of satellite observations have documented a striking decline in the areal extent of Arctic sea ice. The loss of sea ice has impacts on the climate system, human populations, ecosystems, and natural environments across a broad range of spatial and temporal scales. These changes have motivated significant research interest in the predictability and prediction of Arctic sea ice on seasonal-to-interannual timescales. In this talk, I will address two related questions: (1) What is the inherent predictability of Arctic sea ice and what physical mechanisms underlie this predictability? and (2) How can this knowledge be leveraged to improve operational sea ice predictions? I will present findings on the relative roles of the ocean, sea ice, and atmosphere in controlling Arctic sea ice predictability. I will also present evidence for an Arctic spring predictability barrier, which may impose a sharp limit on our ability to make skillful predictions of the summer sea ice minimum. <br />
<br />
<br />
=== Qin Li (UW-Madison) ===<br />
<br />
Title: The power of randomness in scientific computing<br />
<br />
Abstract: Most numerical methods in scientific computing are deterministic. Traditionally, accuracy has been the target while the cost was not the concern. However, in this era of big data, we incline to relax the strict requirements on the accuracy to reduce numerical cost. Introducing randomness in the numerical solvers could potentially speed up the computation significantly at small sacrifice of accuracy. In this talk, I'd like to show two concrete examples how this is done: first on random sketching in experimental design, and the second on numerical homgenization, hoping the discussion can shed light on potential other applications. Joint work with Ke Chen, Jianfeng Lu, Kit Newton and Stephen Wright.<br />
<br />
<br />
=== Joel Nishimura (Arizona State) ===<br />
<br />
Title: Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling<br />
<br />
Abstract: Determining which features of an empirical graph are noteworthy frequently relies upon the ability to sample random graphs with constrained properties. Since empirical graphs have distinctive degree sequences, one of the most popular random graph models is the configuration model, which produces a graph uniformly at random from the set of graphs with a fixed degree sequence. While it is commonly treated as though there is only a single configuration model, one sampled via stub-matching, there are many, depending on whether self-loops and multiedges are allowed and whether edge stubs are labeled or not. We show, these different configuration models can lead to drastically, sometimes opposite, interpretations of empirical graphs. In order to sample from these different configuration models, we review and develop the underpinnings of Markov chain Monte Carlo methods based upon double-edge swaps. We also present new results on the irreducibility of the Markov chain for graphs with self-loops, either proving irreducibility or exactly characterizing the degree sequences for which the Markov chain is reducible. This work completes the study of the irreducibility of double edge-swap Markov chains (and the related Curveball Markov chain) for all combinations of allowing self-loops, multiple self-loops and/or multiedges. <br />
<br />
<br />
=== Alex Townsend (Cornell) ===<br />
<br />
Title: Why are so many matrices and tensors of low rank in computational mathematics?<br />
<br />
Abstract: Matrices and tensors that appear in computational mathematics are so often well-approximated by low-rank objects. Since random ("average") matrices are almost surely of full rank, mathematics needs to explain the abundance of low-rank structures. We will give various methodologies that allow one to begin to understand the prevalence of compressible matrices and tensors and we hope to reveal an underlying link between disparate applications. In particular, we will show how one can connect the singular values of a matrix with displacement structure to a rational approximation problem that highlights fundamental connections between polynomial interpolation, Krylov methods, and fast Toeplitz solvers.<br />
<br />
<br />
=== Prashant G. Mehta ===<br />
<br />
Title: What is the Lagrangian for Nonlinear Filtering?<br />
<br />
Abstract: There is a certain magic involved in recasting the equations in Physics, and the algorithms in Engineering, in variational terms. The most classical of these ‘magics’ is the Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on all this and more appears in the February 19, 2019 issue of The New Yorker magazine: https://www.newyorker.com/science/elements/a-different-kind-of-theory-of-everything?reload=true <br />
<br />
My talk is concerned with a variational (optimal control type) formulation of the problem of nonlinear filtering/estimation. Such formulations are referred to as duality between optimal estimation and optimal control. The first duality principle appears in the seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic optimal control problem. <br />
<br />
In my talk, I will describe a generalization of the Kalman-Bucy duality theory to nonlinear filtering. The generalization is an exact extension, in the sense that the dual optimal control problem has the same minimum variance structure for linear and nonlinear filtering problems. Kalman-Bucy’s classical result is shown to be a special case. During the talk, I will also attempt to review other types of duality relationships that have appeared over the years for the problem of linear and nonlinear filtering. <br />
<br />
This is joint work with Jin Won Kim and Sean Meyn. The talk is based on the following papers: https://arxiv.org/pdf/1903.11195.pdf and https://arxiv.org/pdf/1904.01710.pdf.<br />
<br />
<br />
=== Jean-Luc Thiffeault ===<br />
<br />
We consider a simple model of a two-dimensional microswimmer with fixed swimming speed. The direction of swimming changes according to<br />
a Brownian process, and the swimmer is interacting with boundaries. This is a standard model for a simple microswimmer, or a confined<br />
wormlike chain polymer. The shape of the swimmer determines the range of allowable values that its degrees of freedom can assume --- its<br />
configuration space. Using natural assumptions about reflection of the swimmer at boundaries, we compute the swimmer's invariant<br />
distribution across a channel consisting of two parallel walls, and the statistics of spreading in the longitudinal direction. This gives<br />
us the effective diffusion constant of the swimmer's large scale motion. When the swimmer is longer than the channel width, it cannot<br />
reverse, and we then compute the mean drift velocity of the swimmer. This model offers insight into experiments of scattering of swimmers<br />
from boundaries, and serves as an exactly-solvable baseline when comparing to more complex models. This is joint work with Hongfei Chen.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=18100Applied/ACMS2019-10-04T13:58:40Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[http://www.math.wisc.edu/~qinli/ Qin Li] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Qin Li (UW-Madison)|The power of randomness in scientific computing]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|Why are so many matrices and tensors of low rank in computational mathematics?]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|[https://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Jean-Luc Thiffeault|Shape matters: A Brownian microswimmer interacting with walls]]''<br />
| <br />
|-<br />
| Nov 1<br />
|[https://users.oden.utexas.edu/~tanbui/ Tan Bui] (UT-Austin)<br />
|''[[Applied/ACMS/absF19#Tan Bui (UT-Austin)|Title: TBA]]''<br />
| Li<br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|[https://www.math.wisc.edu/~pgera/ Prerna Gera] (UW)<br />
|''[[Applied/ACMS/absF19#Prerna Gera (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=18061Applied/ACMS2019-10-01T16:36:28Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[http://www.math.wisc.edu/~qinli/ Qin Li] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Qin Li (UW-Madison)|The power of randomness in scientific computing]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|Title: What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|[https://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison)<br />
|''[[Applied/ACMS/absF19# Jean-Luc Thiffeault|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|[https://users.oden.utexas.edu/~tanbui/ Tan Bui] (UT-Austin)<br />
|''[[Applied/ACMS/absF19#Tan Bui (UT-Austin)|Title: TBA]]''<br />
| Li<br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|[https://www.math.wisc.edu/~pgera/ Prerna Gera] (UW)<br />
|''[[Applied/ACMS/absF19#Prerna Gera (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=18037Applied/ACMS/absF192019-09-26T22:27:52Z<p>Qinli: /* ACMS Abstracts: Fall 2019 */</p>
<hr />
<div>= ACMS Abstracts: Fall 2019 =<br />
<br />
=== Leonardo Andrés Zepeda Núñez ===<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.<br />
<br />
<br />
=== Daniel Floryan (UW-Madison) ===<br />
<br />
Title: Flexible Inertial Swimmers<br />
<br />
Abstract: Inertial swimmers deform their bodies and fins to push against the water and propel themselves forward. The deformation is driven partly by active musculature, and partly by passive elasticity. The interaction between elasticity and hydrodynamics confers features on the swimmers not enjoyed by their rigid friends, for example, boosts in speed when flapping at certain frequencies. We explain the salient features of flexible swimmers by drawing ideas from airfoils, vibrating beams, and flags flapping in the wind. The presence of fluid drag has important consequences. We also explore optimal arrangements of flexibility. (It turns out that nature is quite good.)<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local <br />
region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
=== Mitch Bushuk (GFDL/Princeton) ===<br />
<br />
Title: Arctic Sea Ice Predictability in a Changing Cryosphere<br />
<br />
Abstract: Forty years of satellite observations have documented a striking decline in the areal extent of Arctic sea ice. The loss of sea ice has impacts on the climate system, human populations, ecosystems, and natural environments across a broad range of spatial and temporal scales. These changes have motivated significant research interest in the predictability and prediction of Arctic sea ice on seasonal-to-interannual timescales. In this talk, I will address two related questions: (1) What is the inherent predictability of Arctic sea ice and what physical mechanisms underlie this predictability? and (2) How can this knowledge be leveraged to improve operational sea ice predictions? I will present findings on the relative roles of the ocean, sea ice, and atmosphere in controlling Arctic sea ice predictability. I will also present evidence for an Arctic spring predictability barrier, which may impose a sharp limit on our ability to make skillful predictions of the summer sea ice minimum. <br />
<br />
<br />
=== Qin Li (UW-Madison) ===<br />
<br />
Title: The power of randomness in scientific computing<br />
<br />
Abstract: Most numerical methods in scientific computing are deterministic. Traditionally, accuracy has been the target while the cost was not the concern. However, in this era of big data, we incline to relax the strict requirements on the accuracy to reduce numerical cost. Introducing randomness in the numerical solvers could potentially speed up the computation significantly at small sacrifice of accuracy. In this talk, I'd like to show two concrete examples how this is done: first on random sketching in experimental design, and the second on numerical homgenization, hoping the discussion can shed light on potential other applications. Joint work with Ke Chen, Jianfeng Lu, Kit Newton and Stephen Wright.<br />
<br />
<br />
=== Prashant G. Mehta ===<br />
<br />
Title: What is the Lagrangian for Nonlinear Filtering?<br />
<br />
Abstract: There is a certain magic involved in recasting the equations in Physics, and the algorithms in Engineering, in variational terms. The most classical of these ‘magics’ is the Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on all this and more appears in the February 19, 2019 issue of The New Yorker magazine: https://www.newyorker.com/science/elements/a-different-kind-of-theory-of-everything?reload=true <br />
<br />
My talk is concerned with a variational (optimal control type) formulation of the problem of nonlinear filtering/estimation. Such formulations are referred to as duality between optimal estimation and optimal control. The first duality principle appears in the seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic optimal control problem. <br />
<br />
In my talk, I will describe a generalization of the Kalman-Bucy duality theory to nonlinear filtering. The generalization is an exact extension, in the sense that the dual optimal control problem has the same minimum variance structure for linear and nonlinear filtering problems. Kalman-Bucy’s classical result is shown to be a special case. During the talk, I will also attempt to review other types of duality relationships that have appeared over the years for the problem of linear and nonlinear filtering. <br />
<br />
This is joint work with Jin Won Kim and Sean Meyn. The talk is based on the following papers: https://arxiv.org/pdf/1903.11195.pdf and https://arxiv.org/pdf/1904.01710.pdf.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=18036Applied/ACMS2019-09-26T22:26:58Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[http://www.math.wisc.edu/~qinli/ Qin Li] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Qin Li (UW-Madison)|The power of randomness in scientific computing]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|Title: What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|[https://users.oden.utexas.edu/~tanbui/ Tan Bui] (UT-Austin)<br />
|''[[Applied/ACMS/absF19#Tan Bui (UT-Austin)|Title: TBA]]''<br />
| Li<br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|[https://www.math.wisc.edu/~pgera/ Prerna Gera] (UW)<br />
|''[[Applied/ACMS/absF19#Prerna Gera (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17898Applied/ACMS2019-09-16T17:57:10Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|Title: What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|[https://users.oden.utexas.edu/~tanbui/ Tan Bui] (UT-Austin)<br />
|''[[Applied/ACMS/absF19#Tan Bui (UT-Austin)|Title: TBA]]''<br />
| Li<br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17897Applied/ACMS2019-09-16T17:56:35Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|Title: What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|[https://users.oden.utexas.edu/~tanbui/ Tan Bui] (UT-Austin)<br />
|''[[Applied/ACMS/absF19#Tan Bui (UT-Austin)|Title: TBA]]''<br />
| <br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=17892Applied/ACMS/absF192019-09-16T15:56:41Z<p>Qinli: /* ACMS Abstracts: Fall 2019 */</p>
<hr />
<div>= ACMS Abstracts: Fall 2019 =<br />
<br />
=== Leonardo Andrés Zepeda Núñez ===<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.<br />
<br />
<br />
=== Daniel Floryan (UW-Madison) ===<br />
<br />
Title: Flexible Inertial Swimmers<br />
<br />
Abstract: Inertial swimmers deform their bodies and fins to push against the water and propel themselves forward. The deformation is driven partly by active musculature, and partly by passive elasticity. The interaction between elasticity and hydrodynamics confers features on the swimmers not enjoyed by their rigid friends, for example, boosts in speed when flapping at certain frequencies. We explain the salient features of flexible swimmers by drawing ideas from airfoils, vibrating beams, and flags flapping in the wind. The presence of fluid drag has important consequences. We also explore optimal arrangements of flexibility. (It turns out that nature is quite good.)<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local <br />
region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
=== Mitch Bushuk (GFDL/Princeton) ===<br />
<br />
Title: Arctic Sea Ice Predictability in a Changing Cryosphere<br />
<br />
Abstract: Forty years of satellite observations have documented a striking decline in the areal extent of Arctic sea ice. The loss of sea ice has impacts on the climate system, human populations, ecosystems, and natural environments across a broad range of spatial and temporal scales. These changes have motivated significant research interest in the predictability and prediction of Arctic sea ice on seasonal-to-interannual timescales. In this talk, I will address two related questions: (1) What is the inherent predictability of Arctic sea ice and what physical mechanisms underlie this predictability? and (2) How can this knowledge be leveraged to improve operational sea ice predictions? I will present findings on the relative roles of the ocean, sea ice, and atmosphere in controlling Arctic sea ice predictability. I will also present evidence for an Arctic spring predictability barrier, which may impose a sharp limit on our ability to make skillful predictions of the summer sea ice minimum. <br />
<br />
=== Prashant G. Mehta ===<br />
<br />
Title: What is the Lagrangian for Nonlinear Filtering?<br />
<br />
Abstract: There is a certain magic involved in recasting the equations in Physics, and the algorithms in Engineering, in variational terms. The most classical of these ‘magics’ is the Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on all this and more appears in the February 19, 2019 issue of The New Yorker magazine: https://www.newyorker.com/science/elements/a-different-kind-of-theory-of-everything?reload=true <br />
<br />
My talk is concerned with a variational (optimal control type) formulation of the problem of nonlinear filtering/estimation. Such formulations are referred to as duality between optimal estimation and optimal control. The first duality principle appears in the seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic optimal control problem. <br />
<br />
In my talk, I will describe a generalization of the Kalman-Bucy duality theory to nonlinear filtering. The generalization is an exact extension, in the sense that the dual optimal control problem has the same minimum variance structure for linear and nonlinear filtering problems. Kalman-Bucy’s classical result is shown to be a special case. During the talk, I will also attempt to review other types of duality relationships that have appeared over the years for the problem of linear and nonlinear filtering. <br />
<br />
This is joint work with Jin Won Kim and Sean Meyn. The talk is based on the following papers: https://arxiv.org/pdf/1903.11195.pdf and https://arxiv.org/pdf/1904.01710.pdf.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17891Colloquia2019-09-16T15:55:34Z<p>Qinli: /* Jianfeng Lu (Duke) */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6 '''Room 911'''<br />
| Will Sawin (Columbia)<br />
| [[#Will Sawin (Columbia) | On Chowla's Conjecture over F_q[T] ]]<br />
| Marshall<br />
|-<br />
|Sept 13<br />
| [https://www.math.ksu.edu/~soibel/ Yan Soibelman] (Kansas State)<br />
|[[#Yan Soibelman (Kansas State)| Riemann-Hilbert correspondence and Fukaya categories ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| [http://mate.dm.uba.ar/~alidick/ Alicia Dickenstein] (Buenos Aires)<br />
|[[#Alicia Dickenstein (Buenos Aires)| Algebra and geometry in the study of enzymatic cascades ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| [https://math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|[[#Jianfeng Lu (Duke) | How to "localize" the computation?]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 26 '''Thursday 3-4 pm Room 911'''<br />
| [http://eugeniacheng.com/ Eugenia Cheng] (School of the Art Institute of Chicago)<br />
| [[#Eugenia Cheng (School of the Art Institute of Chicago)| Character vs gender in mathematics and beyond ]]<br />
| Marshall / Friends of UW Madison Libraries<br />
|<br />
|-<br />
|Sept 27<br />
| Omer Mermelstein (Madison)<br />
|<br />
|Andrews<br />
|-<br />
|Oct 4<br />
|<br />
|<br />
|-<br />
|Oct 11<br />
|<br />
|<br />
|-<br />
|Oct 18<br />
| Shamgar Gurevich (Madison)<br />
| [[#Shamgar Gurevich (Madison) | Harmonic Analysis on GL(n) over Finite Fields ]]<br />
| Marshall<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Elchanan Mossel (MIT)<br />
|Distinguished Lecture<br />
|Roch<br />
|-<br />
|Nov 8<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 15<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 22<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 11 '''Wednesday'''<br />
|Nick Higham (Manchester)<br />
|LAA lecture<br />
|Brualdi<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Jan 31<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 7<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 14<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 21<br />
|<br />
|-<br />
|Feb 28<br />
|Brett Wick (Washington University, St. Louis)<br />
|<br />
|Seeger<br />
|-<br />
|March 6<br />
| Jessica Fintzen (Michigan)<br />
|<br />
|Marshall<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|(Moduli Spaces Conference)<br />
|<br />
|Boggess, Sankar<br />
|-<br />
|April 3<br />
|Caroline Turnage-Butterbaugh (Carleton College)<br />
|<br />
|Marshall<br />
|-<br />
|April 10<br />
| Sarah Koch (Michigan)<br />
|<br />
| Bruce (WIMAW)<br />
|-<br />
|April 17<br />
|Song Sun (Berkeley)<br />
|<br />
|Huang<br />
|-<br />
|April 24<br />
|Natasa Sesum (Rutgers University)<br />
|<br />
|Angenent<br />
|-<br />
|May 1<br />
|Robert Lazarsfeld (Stony Brook)<br />
|Distinguished lecture<br />
|Erman<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
<br />
===Will Sawin (Columbia)===<br />
<br />
Title: On Chowla's Conjecture over F_q[T]<br />
<br />
Abstract: The Mobius function in number theory is a sequences of 1s, <br />
-1s, and 0s, which is simple to define and closely related to the <br />
prime numbers. Its behavior seems highly random. Chowla's conjecture <br />
is one precise formalization of this randomness, and has seen recent <br />
work by Matomaki, Radziwill, Tao, and Teravainen making progress on <br />
it. In joint work with Mark Shusterman, we modify this conjecture by <br />
replacing the natural numbers parameterizing this sequence with <br />
polynomials over a finite field. Under mild conditions on the finite <br />
field, we are able to prove a strong form of this conjecture. The <br />
proof is based on taking a geometric perspective on the problem, and <br />
succeeds because we are able to simplify the geometry using a trick <br />
based on the strange properties of polynomial derivatives over finite <br />
fields.<br />
<br />
<br />
===Yan Soibelman (Kansas State)===<br />
<br />
Title: Riemann-Hilbert correspondence and Fukaya categories<br />
<br />
Abstract: In this talk I am going to discuss the role of Fukaya categories in the Riemann-Hilbert correspondence<br />
for differential, q-difference and elliptic difference equations in dimension one.<br />
This approach not only gives a unified answer for several versions of the Riemann-Hilbert correspondence but also leads to a natural formulation<br />
of the non-abelian Hodge theory in dimension one. It also explains why periodic monopoles<br />
should appear as harmonic objects in this generalized non-abelian Hodge theory.<br />
All that is a part of the bigger project ``Holomorphic Floer theory",<br />
joint with Maxim Kontsevich.<br />
<br />
<br />
===Alicia Dickenstein (Buenos Aires)===<br />
<br />
Title: Algebra and geometry in the study of enzymatic cascades<br />
<br />
Abstract: In recent years, techniques from computational and real algebraic geometry have been successfully used to address mathematical challenges in systems biology. The algebraic theory of chemical reaction systems aims to understand their dynamic behavior by taking advantage of the inherent algebraic structure in the kinetic equations, and does not need the determination of the parameters a priori, which can be theoretically or practically impossible.<br />
I will give a gentle introduction to general results based on the network structure. In particular, I will describe a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and include many networks that model post-translational modifications of proteins inside the cell. I will also outline recent methods to address the important question of multistationarity, in particular in the study of enzymatic cascades, and will point out some of the mathematical challenges that arise from this application.<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
===Eugenia Cheng (School of the Art Institute of Chicago)===<br />
<br />
Title: Character vs gender in mathematics and beyond<br />
<br />
Abstract: This presentation will be based on my experience of being a female mathematician, and teaching mathematics at all levels from elementary school to grad school. The question of why women are under-represented in mathematics is complex and there are no simple answers, only many many contributing factors. I will focus on character traits, and argue that if we focus on this rather than gender we can have a more productive and less divisive conversation. To try and focus on characters rather than genders I will introduce gender-neutral character adjectives "ingressive" and "congressive" to replace masculine and feminine. I will share my experience of teaching congressive abstract mathematics to art students, in a congressive way, and the possible effects this could have for everyone in mathematics, not just women.<br />
<br />
<br />
===Shamgar Gurevich (Madison)===<br />
<br />
Title: Harmonic Analysis on GL(n) over Finite Fields.<br />
<br />
Abstract: There are many formulas that express interesting properties of a finite group G in terms of sums over its characters. For evaluating or estimating these sums, one of the most salient quantities to understand is the character ratio:<br />
<br />
trace(ρ(g)) / dim(ρ),<br />
<br />
for an irreducible representation ρ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of the mentioned type for analyzing certain random walks on G.<br />
<br />
Recently, we discovered that for classical groups G over finite fields there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant rank. <br />
<br />
This talk will discuss the notion of rank for the group GLn over finite fields, demonstrate how it controls the character ratio, and explain how one can apply the results to verify mixing time and rate for certain random walks.<br />
<br />
This is joint work with Roger Howe (Yale and Texas AM). The numerics for this work was carried by Steve Goldstein (Madison)<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17890Colloquia2019-09-16T15:55:08Z<p>Qinli: /* Jianfeng Lu (Duke) */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6 '''Room 911'''<br />
| Will Sawin (Columbia)<br />
| [[#Will Sawin (Columbia) | On Chowla's Conjecture over F_q[T] ]]<br />
| Marshall<br />
|-<br />
|Sept 13<br />
| [https://www.math.ksu.edu/~soibel/ Yan Soibelman] (Kansas State)<br />
|[[#Yan Soibelman (Kansas State)| Riemann-Hilbert correspondence and Fukaya categories ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| [http://mate.dm.uba.ar/~alidick/ Alicia Dickenstein] (Buenos Aires)<br />
|[[#Alicia Dickenstein (Buenos Aires)| Algebra and geometry in the study of enzymatic cascades ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| [https://math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|[[#Jianfeng Lu (Duke) | How to "localize" the computation?]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 26 '''Thursday 3-4 pm Room 911'''<br />
| [http://eugeniacheng.com/ Eugenia Cheng] (School of the Art Institute of Chicago)<br />
| [[#Eugenia Cheng (School of the Art Institute of Chicago)| Character vs gender in mathematics and beyond ]]<br />
| Marshall / Friends of UW Madison Libraries<br />
|<br />
|-<br />
|Sept 27<br />
| Omer Mermelstein (Madison)<br />
|<br />
|Andrews<br />
|-<br />
|Oct 4<br />
|<br />
|<br />
|-<br />
|Oct 11<br />
|<br />
|<br />
|-<br />
|Oct 18<br />
| Shamgar Gurevich (Madison)<br />
| [[#Shamgar Gurevich (Madison) | Harmonic Analysis on GL(n) over Finite Fields ]]<br />
| Marshall<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Elchanan Mossel (MIT)<br />
|Distinguished Lecture<br />
|Roch<br />
|-<br />
|Nov 8<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 15<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 22<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 11 '''Wednesday'''<br />
|Nick Higham (Manchester)<br />
|LAA lecture<br />
|Brualdi<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Jan 31<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 7<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 14<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 21<br />
|<br />
|-<br />
|Feb 28<br />
|Brett Wick (Washington University, St. Louis)<br />
|<br />
|Seeger<br />
|-<br />
|March 6<br />
| Jessica Fintzen (Michigan)<br />
|<br />
|Marshall<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|(Moduli Spaces Conference)<br />
|<br />
|Boggess, Sankar<br />
|-<br />
|April 3<br />
|Caroline Turnage-Butterbaugh (Carleton College)<br />
|<br />
|Marshall<br />
|-<br />
|April 10<br />
| Sarah Koch (Michigan)<br />
|<br />
| Bruce (WIMAW)<br />
|-<br />
|April 17<br />
|Song Sun (Berkeley)<br />
|<br />
|Huang<br />
|-<br />
|April 24<br />
|Natasa Sesum (Rutgers University)<br />
|<br />
|Angenent<br />
|-<br />
|May 1<br />
|Robert Lazarsfeld (Stony Brook)<br />
|Distinguished lecture<br />
|Erman<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
<br />
===Will Sawin (Columbia)===<br />
<br />
Title: On Chowla's Conjecture over F_q[T]<br />
<br />
Abstract: The Mobius function in number theory is a sequences of 1s, <br />
-1s, and 0s, which is simple to define and closely related to the <br />
prime numbers. Its behavior seems highly random. Chowla's conjecture <br />
is one precise formalization of this randomness, and has seen recent <br />
work by Matomaki, Radziwill, Tao, and Teravainen making progress on <br />
it. In joint work with Mark Shusterman, we modify this conjecture by <br />
replacing the natural numbers parameterizing this sequence with <br />
polynomials over a finite field. Under mild conditions on the finite <br />
field, we are able to prove a strong form of this conjecture. The <br />
proof is based on taking a geometric perspective on the problem, and <br />
succeeds because we are able to simplify the geometry using a trick <br />
based on the strange properties of polynomial derivatives over finite <br />
fields.<br />
<br />
<br />
===Yan Soibelman (Kansas State)===<br />
<br />
Title: Riemann-Hilbert correspondence and Fukaya categories<br />
<br />
Abstract: In this talk I am going to discuss the role of Fukaya categories in the Riemann-Hilbert correspondence<br />
for differential, q-difference and elliptic difference equations in dimension one.<br />
This approach not only gives a unified answer for several versions of the Riemann-Hilbert correspondence but also leads to a natural formulation<br />
of the non-abelian Hodge theory in dimension one. It also explains why periodic monopoles<br />
should appear as harmonic objects in this generalized non-abelian Hodge theory.<br />
All that is a part of the bigger project ``Holomorphic Floer theory",<br />
joint with Maxim Kontsevich.<br />
<br />
<br />
===Alicia Dickenstein (Buenos Aires)===<br />
<br />
Title: Algebra and geometry in the study of enzymatic cascades<br />
<br />
Abstract: In recent years, techniques from computational and real algebraic geometry have been successfully used to address mathematical challenges in systems biology. The algebraic theory of chemical reaction systems aims to understand their dynamic behavior by taking advantage of the inherent algebraic structure in the kinetic equations, and does not need the determination of the parameters a priori, which can be theoretically or practically impossible.<br />
I will give a gentle introduction to general results based on the network structure. In particular, I will describe a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and include many networks that model post-translational modifications of proteins inside the cell. I will also outline recent methods to address the important question of multistationarity, in particular in the study of enzymatic cascades, and will point out some of the mathematical challenges that arise from this application.<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
Title: How to ``localize" computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
===Eugenia Cheng (School of the Art Institute of Chicago)===<br />
<br />
Title: Character vs gender in mathematics and beyond<br />
<br />
Abstract: This presentation will be based on my experience of being a female mathematician, and teaching mathematics at all levels from elementary school to grad school. The question of why women are under-represented in mathematics is complex and there are no simple answers, only many many contributing factors. I will focus on character traits, and argue that if we focus on this rather than gender we can have a more productive and less divisive conversation. To try and focus on characters rather than genders I will introduce gender-neutral character adjectives "ingressive" and "congressive" to replace masculine and feminine. I will share my experience of teaching congressive abstract mathematics to art students, in a congressive way, and the possible effects this could have for everyone in mathematics, not just women.<br />
<br />
<br />
===Shamgar Gurevich (Madison)===<br />
<br />
Title: Harmonic Analysis on GL(n) over Finite Fields.<br />
<br />
Abstract: There are many formulas that express interesting properties of a finite group G in terms of sums over its characters. For evaluating or estimating these sums, one of the most salient quantities to understand is the character ratio:<br />
<br />
trace(ρ(g)) / dim(ρ),<br />
<br />
for an irreducible representation ρ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of the mentioned type for analyzing certain random walks on G.<br />
<br />
Recently, we discovered that for classical groups G over finite fields there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant rank. <br />
<br />
This talk will discuss the notion of rank for the group GLn over finite fields, demonstrate how it controls the character ratio, and explain how one can apply the results to verify mixing time and rate for certain random walks.<br />
<br />
This is joint work with Roger Howe (Yale and Texas AM). The numerics for this work was carried by Steve Goldstein (Madison)<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17889Colloquia2019-09-16T15:54:49Z<p>Qinli: /* Jianfeng Lu (Duke) */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6 '''Room 911'''<br />
| Will Sawin (Columbia)<br />
| [[#Will Sawin (Columbia) | On Chowla's Conjecture over F_q[T] ]]<br />
| Marshall<br />
|-<br />
|Sept 13<br />
| [https://www.math.ksu.edu/~soibel/ Yan Soibelman] (Kansas State)<br />
|[[#Yan Soibelman (Kansas State)| Riemann-Hilbert correspondence and Fukaya categories ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| [http://mate.dm.uba.ar/~alidick/ Alicia Dickenstein] (Buenos Aires)<br />
|[[#Alicia Dickenstein (Buenos Aires)| Algebra and geometry in the study of enzymatic cascades ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| [https://math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|[[#Jianfeng Lu (Duke) | How to "localize" the computation?]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 26 '''Thursday 3-4 pm Room 911'''<br />
| [http://eugeniacheng.com/ Eugenia Cheng] (School of the Art Institute of Chicago)<br />
| [[#Eugenia Cheng (School of the Art Institute of Chicago)| Character vs gender in mathematics and beyond ]]<br />
| Marshall / Friends of UW Madison Libraries<br />
|<br />
|-<br />
|Sept 27<br />
| Omer Mermelstein (Madison)<br />
|<br />
|Andrews<br />
|-<br />
|Oct 4<br />
|<br />
|<br />
|-<br />
|Oct 11<br />
|<br />
|<br />
|-<br />
|Oct 18<br />
| Shamgar Gurevich (Madison)<br />
| [[#Shamgar Gurevich (Madison) | Harmonic Analysis on GL(n) over Finite Fields ]]<br />
| Marshall<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Elchanan Mossel (MIT)<br />
|Distinguished Lecture<br />
|Roch<br />
|-<br />
|Nov 8<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 15<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 22<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 11 '''Wednesday'''<br />
|Nick Higham (Manchester)<br />
|LAA lecture<br />
|Brualdi<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Jan 31<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 7<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 14<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 21<br />
|<br />
|-<br />
|Feb 28<br />
|Brett Wick (Washington University, St. Louis)<br />
|<br />
|Seeger<br />
|-<br />
|March 6<br />
| Jessica Fintzen (Michigan)<br />
|<br />
|Marshall<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|(Moduli Spaces Conference)<br />
|<br />
|Boggess, Sankar<br />
|-<br />
|April 3<br />
|Caroline Turnage-Butterbaugh (Carleton College)<br />
|<br />
|Marshall<br />
|-<br />
|April 10<br />
| Sarah Koch (Michigan)<br />
|<br />
| Bruce (WIMAW)<br />
|-<br />
|April 17<br />
|Song Sun (Berkeley)<br />
|<br />
|Huang<br />
|-<br />
|April 24<br />
|Natasa Sesum (Rutgers University)<br />
|<br />
|Angenent<br />
|-<br />
|May 1<br />
|Robert Lazarsfeld (Stony Brook)<br />
|Distinguished lecture<br />
|Erman<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
<br />
===Will Sawin (Columbia)===<br />
<br />
Title: On Chowla's Conjecture over F_q[T]<br />
<br />
Abstract: The Mobius function in number theory is a sequences of 1s, <br />
-1s, and 0s, which is simple to define and closely related to the <br />
prime numbers. Its behavior seems highly random. Chowla's conjecture <br />
is one precise formalization of this randomness, and has seen recent <br />
work by Matomaki, Radziwill, Tao, and Teravainen making progress on <br />
it. In joint work with Mark Shusterman, we modify this conjecture by <br />
replacing the natural numbers parameterizing this sequence with <br />
polynomials over a finite field. Under mild conditions on the finite <br />
field, we are able to prove a strong form of this conjecture. The <br />
proof is based on taking a geometric perspective on the problem, and <br />
succeeds because we are able to simplify the geometry using a trick <br />
based on the strange properties of polynomial derivatives over finite <br />
fields.<br />
<br />
<br />
===Yan Soibelman (Kansas State)===<br />
<br />
Title: Riemann-Hilbert correspondence and Fukaya categories<br />
<br />
Abstract: In this talk I am going to discuss the role of Fukaya categories in the Riemann-Hilbert correspondence<br />
for differential, q-difference and elliptic difference equations in dimension one.<br />
This approach not only gives a unified answer for several versions of the Riemann-Hilbert correspondence but also leads to a natural formulation<br />
of the non-abelian Hodge theory in dimension one. It also explains why periodic monopoles<br />
should appear as harmonic objects in this generalized non-abelian Hodge theory.<br />
All that is a part of the bigger project ``Holomorphic Floer theory",<br />
joint with Maxim Kontsevich.<br />
<br />
<br />
===Alicia Dickenstein (Buenos Aires)===<br />
<br />
Title: Algebra and geometry in the study of enzymatic cascades<br />
<br />
Abstract: In recent years, techniques from computational and real algebraic geometry have been successfully used to address mathematical challenges in systems biology. The algebraic theory of chemical reaction systems aims to understand their dynamic behavior by taking advantage of the inherent algebraic structure in the kinetic equations, and does not need the determination of the parameters a priori, which can be theoretically or practically impossible.<br />
I will give a gentle introduction to general results based on the network structure. In particular, I will describe a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and include many networks that model post-translational modifications of proteins inside the cell. I will also outline recent methods to address the important question of multistationarity, in particular in the study of enzymatic cascades, and will point out some of the mathematical challenges that arise from this application.<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
Title: How to 'localize' computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
===Eugenia Cheng (School of the Art Institute of Chicago)===<br />
<br />
Title: Character vs gender in mathematics and beyond<br />
<br />
Abstract: This presentation will be based on my experience of being a female mathematician, and teaching mathematics at all levels from elementary school to grad school. The question of why women are under-represented in mathematics is complex and there are no simple answers, only many many contributing factors. I will focus on character traits, and argue that if we focus on this rather than gender we can have a more productive and less divisive conversation. To try and focus on characters rather than genders I will introduce gender-neutral character adjectives "ingressive" and "congressive" to replace masculine and feminine. I will share my experience of teaching congressive abstract mathematics to art students, in a congressive way, and the possible effects this could have for everyone in mathematics, not just women.<br />
<br />
<br />
===Shamgar Gurevich (Madison)===<br />
<br />
Title: Harmonic Analysis on GL(n) over Finite Fields.<br />
<br />
Abstract: There are many formulas that express interesting properties of a finite group G in terms of sums over its characters. For evaluating or estimating these sums, one of the most salient quantities to understand is the character ratio:<br />
<br />
trace(ρ(g)) / dim(ρ),<br />
<br />
for an irreducible representation ρ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of the mentioned type for analyzing certain random walks on G.<br />
<br />
Recently, we discovered that for classical groups G over finite fields there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant rank. <br />
<br />
This talk will discuss the notion of rank for the group GLn over finite fields, demonstrate how it controls the character ratio, and explain how one can apply the results to verify mixing time and rate for certain random walks.<br />
<br />
This is joint work with Roger Howe (Yale and Texas AM). The numerics for this work was carried by Steve Goldstein (Madison)<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17888Colloquia2019-09-16T15:54:19Z<p>Qinli: /* Abstracts */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6 '''Room 911'''<br />
| Will Sawin (Columbia)<br />
| [[#Will Sawin (Columbia) | On Chowla's Conjecture over F_q[T] ]]<br />
| Marshall<br />
|-<br />
|Sept 13<br />
| [https://www.math.ksu.edu/~soibel/ Yan Soibelman] (Kansas State)<br />
|[[#Yan Soibelman (Kansas State)| Riemann-Hilbert correspondence and Fukaya categories ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| [http://mate.dm.uba.ar/~alidick/ Alicia Dickenstein] (Buenos Aires)<br />
|[[#Alicia Dickenstein (Buenos Aires)| Algebra and geometry in the study of enzymatic cascades ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| [https://math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|[[#Jianfeng Lu (Duke) | How to "localize" the computation?]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 26 '''Thursday 3-4 pm Room 911'''<br />
| [http://eugeniacheng.com/ Eugenia Cheng] (School of the Art Institute of Chicago)<br />
| [[#Eugenia Cheng (School of the Art Institute of Chicago)| Character vs gender in mathematics and beyond ]]<br />
| Marshall / Friends of UW Madison Libraries<br />
|<br />
|-<br />
|Sept 27<br />
| Omer Mermelstein (Madison)<br />
|<br />
|Andrews<br />
|-<br />
|Oct 4<br />
|<br />
|<br />
|-<br />
|Oct 11<br />
|<br />
|<br />
|-<br />
|Oct 18<br />
| Shamgar Gurevich (Madison)<br />
| [[#Shamgar Gurevich (Madison) | Harmonic Analysis on GL(n) over Finite Fields ]]<br />
| Marshall<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Elchanan Mossel (MIT)<br />
|Distinguished Lecture<br />
|Roch<br />
|-<br />
|Nov 8<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 15<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 22<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 11 '''Wednesday'''<br />
|Nick Higham (Manchester)<br />
|LAA lecture<br />
|Brualdi<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Jan 31<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 7<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 14<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 21<br />
|<br />
|-<br />
|Feb 28<br />
|Brett Wick (Washington University, St. Louis)<br />
|<br />
|Seeger<br />
|-<br />
|March 6<br />
| Jessica Fintzen (Michigan)<br />
|<br />
|Marshall<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|(Moduli Spaces Conference)<br />
|<br />
|Boggess, Sankar<br />
|-<br />
|April 3<br />
|Caroline Turnage-Butterbaugh (Carleton College)<br />
|<br />
|Marshall<br />
|-<br />
|April 10<br />
| Sarah Koch (Michigan)<br />
|<br />
| Bruce (WIMAW)<br />
|-<br />
|April 17<br />
|Song Sun (Berkeley)<br />
|<br />
|Huang<br />
|-<br />
|April 24<br />
|Natasa Sesum (Rutgers University)<br />
|<br />
|Angenent<br />
|-<br />
|May 1<br />
|Robert Lazarsfeld (Stony Brook)<br />
|Distinguished lecture<br />
|Erman<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
<br />
===Will Sawin (Columbia)===<br />
<br />
Title: On Chowla's Conjecture over F_q[T]<br />
<br />
Abstract: The Mobius function in number theory is a sequences of 1s, <br />
-1s, and 0s, which is simple to define and closely related to the <br />
prime numbers. Its behavior seems highly random. Chowla's conjecture <br />
is one precise formalization of this randomness, and has seen recent <br />
work by Matomaki, Radziwill, Tao, and Teravainen making progress on <br />
it. In joint work with Mark Shusterman, we modify this conjecture by <br />
replacing the natural numbers parameterizing this sequence with <br />
polynomials over a finite field. Under mild conditions on the finite <br />
field, we are able to prove a strong form of this conjecture. The <br />
proof is based on taking a geometric perspective on the problem, and <br />
succeeds because we are able to simplify the geometry using a trick <br />
based on the strange properties of polynomial derivatives over finite <br />
fields.<br />
<br />
<br />
===Yan Soibelman (Kansas State)===<br />
<br />
Title: Riemann-Hilbert correspondence and Fukaya categories<br />
<br />
Abstract: In this talk I am going to discuss the role of Fukaya categories in the Riemann-Hilbert correspondence<br />
for differential, q-difference and elliptic difference equations in dimension one.<br />
This approach not only gives a unified answer for several versions of the Riemann-Hilbert correspondence but also leads to a natural formulation<br />
of the non-abelian Hodge theory in dimension one. It also explains why periodic monopoles<br />
should appear as harmonic objects in this generalized non-abelian Hodge theory.<br />
All that is a part of the bigger project ``Holomorphic Floer theory",<br />
joint with Maxim Kontsevich.<br />
<br />
<br />
===Alicia Dickenstein (Buenos Aires)===<br />
<br />
Title: Algebra and geometry in the study of enzymatic cascades<br />
<br />
Abstract: In recent years, techniques from computational and real algebraic geometry have been successfully used to address mathematical challenges in systems biology. The algebraic theory of chemical reaction systems aims to understand their dynamic behavior by taking advantage of the inherent algebraic structure in the kinetic equations, and does not need the determination of the parameters a priori, which can be theoretically or practically impossible.<br />
I will give a gentle introduction to general results based on the network structure. In particular, I will describe a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and include many networks that model post-translational modifications of proteins inside the cell. I will also outline recent methods to address the important question of multistationarity, in particular in the study of enzymatic cascades, and will point out some of the mathematical challenges that arise from this application.<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
It is often desirable to restrict the numerical computation to a local region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
===Eugenia Cheng (School of the Art Institute of Chicago)===<br />
<br />
Title: Character vs gender in mathematics and beyond<br />
<br />
Abstract: This presentation will be based on my experience of being a female mathematician, and teaching mathematics at all levels from elementary school to grad school. The question of why women are under-represented in mathematics is complex and there are no simple answers, only many many contributing factors. I will focus on character traits, and argue that if we focus on this rather than gender we can have a more productive and less divisive conversation. To try and focus on characters rather than genders I will introduce gender-neutral character adjectives "ingressive" and "congressive" to replace masculine and feminine. I will share my experience of teaching congressive abstract mathematics to art students, in a congressive way, and the possible effects this could have for everyone in mathematics, not just women.<br />
<br />
<br />
===Shamgar Gurevich (Madison)===<br />
<br />
Title: Harmonic Analysis on GL(n) over Finite Fields.<br />
<br />
Abstract: There are many formulas that express interesting properties of a finite group G in terms of sums over its characters. For evaluating or estimating these sums, one of the most salient quantities to understand is the character ratio:<br />
<br />
trace(ρ(g)) / dim(ρ),<br />
<br />
for an irreducible representation ρ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of the mentioned type for analyzing certain random walks on G.<br />
<br />
Recently, we discovered that for classical groups G over finite fields there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant rank. <br />
<br />
This talk will discuss the notion of rank for the group GLn over finite fields, demonstrate how it controls the character ratio, and explain how one can apply the results to verify mixing time and rate for certain random walks.<br />
<br />
This is joint work with Roger Howe (Yale and Texas AM). The numerics for this work was carried by Steve Goldstein (Madison)<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17882Applied/ACMS2019-09-15T19:54:09Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|Title: What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17881Colloquia2019-09-15T19:35:32Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6 '''Room 911'''<br />
| Will Sawin (Columbia)<br />
| [[#Will Sawin (Columbia) | On Chowla's Conjecture over F_q[T] ]]<br />
| Marshall<br />
|-<br />
|Sept 13<br />
| [https://www.math.ksu.edu/~soibel/ Yan Soibelman] (Kansas State)<br />
|[[#Yan Soibelman (Kansas State)| Riemann-Hilbert correspondence and Fukaya categories ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| [http://mate.dm.uba.ar/~alidick/ Alicia Dickenstein] (Buenos Aires)<br />
|[[#Alicia Dickenstein (Buenos Aires)| Algebra and geometry in the study of enzymatic cascades ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| [https://math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|[[#Jianfeng Lu (Duke) | How to "localize" the computation?]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 26 '''Thursday 3-4 pm Room 911'''<br />
| [http://eugeniacheng.com/ Eugenia Cheng] (School of the Art Institute of Chicago)<br />
| [[#Eugenia Cheng (School of the Art Institute of Chicago)| Character vs gender in mathematics and beyond ]]<br />
| Marshall / Friends of UW Madison Libraries<br />
|<br />
|-<br />
|Sept 27<br />
| Omer Mermelstein (Madison)<br />
|<br />
|Andrews<br />
|-<br />
|Oct 4<br />
|<br />
|<br />
|-<br />
|Oct 11<br />
|<br />
|<br />
|-<br />
|Oct 18<br />
| Shamgar Gurevich (Madison)<br />
| [[#Shamgar Gurevich (Madison) | Harmonic Analysis on GL(n) over Finite Fields ]]<br />
| Marshall<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Elchanan Mossel (MIT)<br />
|Distinguished Lecture<br />
|Roch<br />
|-<br />
|Nov 8<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 15<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 22<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 11 '''Wednesday'''<br />
|Nick Higham (Manchester)<br />
|LAA lecture<br />
|Brualdi<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Jan 31<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 7<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 14<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 21<br />
|<br />
|-<br />
|Feb 28<br />
|Brett Wick (Washington University, St. Louis)<br />
|<br />
|Seeger<br />
|-<br />
|March 6<br />
| Jessica Fintzen (Michigan)<br />
|<br />
|Marshall<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|(Moduli Spaces Conference)<br />
|<br />
|Boggess, Sankar<br />
|-<br />
|April 3<br />
|Caroline Turnage-Butterbaugh (Carleton College)<br />
|<br />
|Marshall<br />
|-<br />
|April 10<br />
| Sarah Koch (Michigan)<br />
|<br />
| Bruce (WIMAW)<br />
|-<br />
|April 17<br />
|Song Sun (Berkeley)<br />
|<br />
|Huang<br />
|-<br />
|April 24<br />
|Natasa Sesum (Rutgers University)<br />
|<br />
|Angenent<br />
|-<br />
|May 1<br />
|Robert Lazarsfeld (Stony Brook)<br />
|Distinguished lecture<br />
|Erman<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
<br />
===Will Sawin (Columbia)===<br />
<br />
Title: On Chowla's Conjecture over F_q[T]<br />
<br />
Abstract: The Mobius function in number theory is a sequences of 1s, <br />
-1s, and 0s, which is simple to define and closely related to the <br />
prime numbers. Its behavior seems highly random. Chowla's conjecture <br />
is one precise formalization of this randomness, and has seen recent <br />
work by Matomaki, Radziwill, Tao, and Teravainen making progress on <br />
it. In joint work with Mark Shusterman, we modify this conjecture by <br />
replacing the natural numbers parameterizing this sequence with <br />
polynomials over a finite field. Under mild conditions on the finite <br />
field, we are able to prove a strong form of this conjecture. The <br />
proof is based on taking a geometric perspective on the problem, and <br />
succeeds because we are able to simplify the geometry using a trick <br />
based on the strange properties of polynomial derivatives over finite <br />
fields.<br />
<br />
<br />
===Yan Soibelman (Kansas State)===<br />
<br />
Title: Riemann-Hilbert correspondence and Fukaya categories<br />
<br />
Abstract: In this talk I am going to discuss the role of Fukaya categories in the Riemann-Hilbert correspondence<br />
for differential, q-difference and elliptic difference equations in dimension one.<br />
This approach not only gives a unified answer for several versions of the Riemann-Hilbert correspondence but also leads to a natural formulation<br />
of the non-abelian Hodge theory in dimension one. It also explains why periodic monopoles<br />
should appear as harmonic objects in this generalized non-abelian Hodge theory.<br />
All that is a part of the bigger project ``Holomorphic Floer theory",<br />
joint with Maxim Kontsevich.<br />
<br />
<br />
===Alicia Dickenstein (Buenos Aires)===<br />
<br />
Title: Algebra and geometry in the study of enzymatic cascades<br />
<br />
Abstract: In recent years, techniques from computational and real algebraic geometry have been successfully used to address mathematical challenges in systems biology. The algebraic theory of chemical reaction systems aims to understand their dynamic behavior by taking advantage of the inherent algebraic structure in the kinetic equations, and does not need the determination of the parameters a priori, which can be theoretically or practically impossible.<br />
I will give a gentle introduction to general results based on the network structure. In particular, I will describe a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and include many networks that model post-translational modifications of proteins inside the cell. I will also outline recent methods to address the important question of multistationarity, in particular in the study of enzymatic cascades, and will point out some of the mathematical challenges that arise from this application.<br />
<br />
<br />
===Eugenia Cheng (School of the Art Institute of Chicago)===<br />
<br />
Title: Character vs gender in mathematics and beyond<br />
<br />
Abstract: This presentation will be based on my experience of being a female mathematician, and teaching mathematics at all levels from elementary school to grad school. The question of why women are under-represented in mathematics is complex and there are no simple answers, only many many contributing factors. I will focus on character traits, and argue that if we focus on this rather than gender we can have a more productive and less divisive conversation. To try and focus on characters rather than genders I will introduce gender-neutral character adjectives "ingressive" and "congressive" to replace masculine and feminine. I will share my experience of teaching congressive abstract mathematics to art students, in a congressive way, and the possible effects this could have for everyone in mathematics, not just women.<br />
<br />
<br />
===Shamgar Gurevich (Madison)===<br />
<br />
Title: Harmonic Analysis on GL(n) over Finite Fields.<br />
<br />
Abstract: There are many formulas that express interesting properties of a finite group G in terms of sums over its characters. For evaluating or estimating these sums, one of the most salient quantities to understand is the character ratio:<br />
<br />
trace(ρ(g)) / dim(ρ),<br />
<br />
for an irreducible representation ρ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of the mentioned type for analyzing certain random walks on G.<br />
<br />
Recently, we discovered that for classical groups G over finite fields there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant rank. <br />
<br />
This talk will discuss the notion of rank for the group GLn over finite fields, demonstrate how it controls the character ratio, and explain how one can apply the results to verify mixing time and rate for certain random walks.<br />
<br />
This is joint work with Roger Howe (Yale and Texas AM). The numerics for this work was carried by Steve Goldstein (Madison)<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17738Applied/ACMS2019-09-03T21:06:06Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Oct 25<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 8<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 15<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=17737Applied/ACMS/absF192019-09-03T21:01:56Z<p>Qinli: </p>
<hr />
<div>Leonardo Andrés Zepeda Núñez<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=17733Applied/ACMS/absF192019-09-03T14:23:38Z<p>Qinli: Created page with "Leonardo Andrés Zepeda Núñez Title: Abstract:"</p>
<hr />
<div>Leonardo Andrés Zepeda Núñez<br />
<br />
Title:<br />
<br />
Abstract:</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17616Applied/ACMS2019-08-06T15:21:09Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17596Applied/ACMS2019-07-31T14:19:29Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Fall_2019-Spring_2020&diff=17586Fall 2019-Spring 20202019-07-26T18:58:10Z<p>Qinli: /* PDE GA Seminar Schedule Fall 2019-Spring 2020 */</p>
<hr />
<div>== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==<br />
<br />
<br />
{| cellpadding="8"<br />
!style="width:20%" align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!style="width:20%" align="left" | host(s)<br />
|- <br />
|Sep 9<br />
| Scott Smith (UW Madison)<br />
|[[#Scott Smith | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 14-15<br />
| AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html<br />
|[[ # | ]]<br />
| <br />
|- <br />
|Sep 16<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Sep 23<br />
| Son Tu (UW Madison)<br />
|[[#Son Tu | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 30<br />
| Michael Loss (Georgia tech)<br />
|[[#Michael Loss | TBA ]]<br />
| Kim<br />
|- <br />
|Oct 7<br />
| Jin Woo Jang (Postech)<br />
|[[#Speaker | TBA ]]<br />
| Kim<br />
|- <br />
|Oct 14<br />
| Stefania Patrizi (UT Austin)<br />
|[[#Stefania Patrizi | TBA ]]<br />
| Tran<br />
|- <br />
|Oct 21<br />
| Claude Bardos (Université Paris Denis Diderot, France)<br />
|[[#Claude Bardos | From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture ]]<br />
| Li<br />
|- <br />
|Oct 28<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 4<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 11<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|- <br />
|- <br />
|- <br />
|Feb 17<br />
| Yannick Sire (JHU)<br />
|[[#Yannick Sire (JHU) | TBA ]]<br />
| Tran<br />
|- <br />
|Feb 24<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 2<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 9<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 16 <br />
| No seminar (spring break)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 23<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 30<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 6<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 13<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 20<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 27<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|}</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17581Applied/ACMS2019-07-24T16:06:42Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Fall_2019-Spring_2020&diff=17580Fall 2019-Spring 20202019-07-23T13:36:49Z<p>Qinli: /* PDE GA Seminar Schedule Fall 2019-Spring 2020 */</p>
<hr />
<div>== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==<br />
<br />
<br />
{| cellpadding="8"<br />
!style="width:20%" align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!style="width:20%" align="left" | host(s)<br />
|- <br />
|Sep 9<br />
| Scott Smith (UW Madison)<br />
|[[#Scott Smith | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 14-15<br />
| AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html<br />
|[[ # | ]]<br />
| <br />
|- <br />
|Sep 16<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Sep 23<br />
| Son Tu (UW Madison)<br />
|[[#Son Tu | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 30<br />
| Michael Loss (Georgia tech)<br />
|[[#Michael Loss | TBA ]]<br />
| Kim<br />
|- <br />
|Oct 7<br />
| Jin Woo Jang (Postech)<br />
|[[#Speaker | TBA ]]<br />
| Kim<br />
|- <br />
|Oct 14<br />
| Stefania Patrizi (UT Austin)<br />
|[[#Stefania Patrizi | TBA ]]<br />
| Tran<br />
|- <br />
|Oct 21<br />
| Claude Bardos (Paris)<br />
|[[#Claude Bardos | TBA ]]<br />
| Li<br />
|- <br />
|Oct 28<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 4<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 11<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|- <br />
|- <br />
|- <br />
|Feb 17<br />
| Yannick Sire (JHU)<br />
|[[#Yannick Sire (JHU) | TBA ]]<br />
| Tran<br />
|- <br />
|Feb 24<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 2<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 9<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 16 <br />
| No seminar (spring break)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 23<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 30<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 6<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 13<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 20<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 27<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|}</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17519Applied/ACMS2019-07-15T16:07:57Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17510Applied/ACMS2019-07-06T18:40:36Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17509Applied/ACMS2019-07-06T18:37:43Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17508Applied/ACMS2019-07-06T18:37:04Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17507Applied/ACMS2019-07-06T18:35:31Z<p>Qinli: /*Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=17506Applied/ACMS/Spring20192019-07-06T18:31:59Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|Aggregation equations over bounded domains]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison, Math)<br />
|''[[Applied/ACMS/absS19#Jean-Luc Thiffeault (UW-Madison, Math)|The mathematics of burger flipping]]''<br />
| self-hosted<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|Stochastic persistence and extinction]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Mustafa Mohamad (NYU/Courant)|Strategies for extreme event quantification in intermittent dynamical systems]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|The Random Batch Method and its application to sampling]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|2-D Stokes Immersed Boundary Problem and its Regularizations: Well-posedness, Singular Limit, and Error Estimates]]''<br />
| Chen</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17489Colloquia2019-06-04T02:14:02Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6<br />
|<br />
|<br />
|-<br />
|Sept 13<br />
| Jan Soibelman (Kansas State)<br />
|[[# TBA| TBA ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| Alicia Dickenstein (Buenos Aires)<br />
|[[# TBA| TBA ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| Jianfeng Lu (Duke)<br />
|[[#TBA | TBA]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 27<br />
|<br />
|-<br />
|Oct 4<br />
|<br />
|-<br />
|Oct 11<br />
|<br />
|-<br />
|Oct 18<br />
|<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Possibly reserved for job talk?<br />
|<br />
|-<br />
|Nov 8<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 15<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 22<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|<br />
|-<br />
|Jan 31<br />
|<br />
|-<br />
|Feb 7<br />
|<br />
|-<br />
|Feb 14<br />
|<br />
|-<br />
|Feb 21<br />
|<br />
|-<br />
|Feb 28<br />
|<br />
|-<br />
|March 6<br />
|<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|<br />
|-<br />
|April 3<br />
|<br />
|-<br />
|April 10<br />
|<br />
|-<br />
|April 17<br />
|<br />
|-<br />
|April 24<br />
|<br />
|-<br />
|May 1<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Person (Institution)===<br />
<br />
Title:<br />
<br />
Abstract:<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17341Colloquia2019-04-18T17:56:55Z<p>Qinli: /* Abstracts */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
==Spring 2019==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Jan 25 '''Room 911'''<br />
| [http://www.users.miamioh.edu/randrib/ Beata Randrianantoanina] (Miami University Ohio) WIMAW<br />
|[[#Beata Randrianantoanina (Miami University Ohio) | Some nonlinear problems in the geometry of Banach spaces and their applications ]]<br />
| Tullia Dymarz<br />
|<br />
|-<br />
|Jan 30 '''Wednesday'''<br />
| Talk rescheduled to Feb 15<br />
|<br />
|-<br />
|Jan 31 '''Thursday'''<br />
| Talk rescheduled to Feb 13<br />
|<br />
|-<br />
|Feb 1<br />
| Talk cancelled due to weather<br />
|<br />
| <br />
|<br />
|-<br />
|Feb 5 '''Tuesday, VV 911'''<br />
| [http://www.math.tamu.edu/~alexei.poltoratski/ Alexei Poltoratski] (Texas A&M University)<br />
|[[#Alexei Poltoratski (Texas A&M)| Completeness of exponentials: Beurling-Malliavin and type problems ]]<br />
| Denisov<br />
|<br />
|-<br />
|Feb 6 '''Wednesday, room 911'''<br />
| [https://lc-tsai.github.io/ Li-Cheng Tsai] (Columbia University)<br />
|[[#Li-Cheng Tsai (Columbia University)| When particle systems meet PDEs ]]<br />
| Anderson<br />
|<br />
|-<br />
|Feb 8<br />
| [https://sites.math.northwestern.edu/~anaber/ Aaron Naber] (Northwestern)<br />
|[[#Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 11 '''Monday'''<br />
| [https://www2.bc.edu/david-treumann/materials.html David Treumann] (Boston College)<br />
|[[#David Treumann (Boston College) | Twisting things in topology and symplectic topology by pth powers ]]<br />
| Caldararu<br />
|<br />
|-<br />
| Feb 13 '''Wednesday'''<br />
| [http://www.math.tamu.edu/~dbaskin/ Dean Baskin] (Texas A&M)<br />
|[[#Dean Baskin (Texas A&M) | Radiation fields for wave equations ]]<br />
| Street<br />
<br />
|-<br />
| Feb 15 <br />
| [https://services.math.duke.edu/~pierce/ Lillian Pierce] (Duke University)<br />
| [[#Lillian Pierce (Duke University) | Short character sums ]]<br />
| Boston and Street<br />
|<br />
|-<br />
|Feb 22<br />
| [https://people.math.osu.edu/cueto.5/ Angelica Cueto] (Ohio State)<br />
|[[#Angelica Cueto (The Ohio State University)| Lines on cubic surfaces in the tropics ]]<br />
| Erman and Corey<br />
|<br />
|-<br />
|March 4 '''Monday'''<br />
| [http://www-users.math.umn.edu/~sverak/ Vladimir Sverak] (Minnesota) <br />
|[[#Vladimir Sverak (Minnesota) | Wasow lecture "PDE aspects of the Navier-Stokes equations and simpler models" ]]<br />
| Kim<br />
|<br />
|-<br />
|March 8<br />
| [https://orion.math.iastate.edu/jmccullo/index.html Jason McCullough] (Iowa State)<br />
|[[#Jason McCullough (Iowa State)| On the degrees and complexity of algebraic varieties ]]<br />
| Erman<br />
|<br />
|-<br />
|March 15<br />
| <s>[http://www.its.caltech.edu/~maksym/ Maksym Radziwill] (Caltech)</s> <b>Talk cancelled</b><br />
|[[#Maksym Radziwill (Caltech) | <s>Recent progress in multiplicative number theory</s> ]]<br />
| Marshall<br />
|<br />
|-<br />
|March 29<br />
| Jennifer Park (OSU)<br />
|[[#Jennifer Park (OSU) | Rational points on varieties ]]<br />
| Marshall<br />
|<br />
|-<br />
|April 5<br />
| Ju-Lee Kim (MIT)<br />
|[[#Ju-Lee Kim (MIT) | Types and counting automorphic forms ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 12<br />
| Eviatar Procaccia (TAMU)<br />
|[[#Eviatar Procaccia | Can one hear the shape of a random walk? ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 19<br />
| [http://www.math.rice.edu/~jkn3/ Jo Nelson] (Rice University)<br />
|[[#Jo Nelson (Rice)| Contact Invariants and Reeb Dynamics ]]<br />
| Jean-Luc<br />
|<br />
|-<br />
|April 22 '''Monday'''<br />
| [https://justinh.su Justin Hsu] (Madison)<br />
|[[#Justin Hsu (Madison) | From Couplings to Probabilistic Relational Program Logics ]]<br />
| Lempp<br />
|<br />
|-<br />
|April 26<br />
| [https://www.brown.edu/academics/applied-mathematics/faculty/kavita-ramanan/home Kavita Ramanan] (Brown University)<br />
|[[# Kavita Ramanan (Brown) | Tales of Random Projections ]]<br />
| WIMAW<br />
|<br />
|-<br />
|May 3<br />
| Tomasz Przebinda (Oklahoma)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Beata Randrianantoanina (Miami University Ohio)===<br />
<br />
Title: Some nonlinear problems in the geometry of Banach spaces and their applications.<br />
<br />
Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics.<br />
<br />
===Lillian Pierce (Duke University)===<br />
<br />
Title: Short character sums <br />
<br />
Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations.<br />
<br />
===Angelica Cueto (The Ohio State University)===<br />
Title: Lines on cubic surfaces in the tropics<br />
<br />
Abstract: Since the beginning of tropical geometry, a persistent challenge has been to emulate tropical versions of classical results in algebraic geometry. The well-know statement <i>any smooth surface of degree three in P^3 contains exactly 27 lines</i> is known to be false tropically. Work of Vigeland from 2007 provides examples of tropical cubic surfaces with infinitely many lines and gives a classification of tropical lines on general smooth tropical surfaces in TP^3.<br />
<br />
In this talk I will explain how to correct this pathology by viewing the surface as a del Pezzo cubic and considering its embedding in P^44 via its anticanonical bundle. The combinatorics of the root system of type E_6 and a tropical notion of convexity will play a central role in the construction. This is joint work in progress with Anand Deopurkar.<br />
<br />
===David Treumann (Boston College)===<br />
<br />
Title: Twisting things in topology and symplectic topology by pth powers<br />
<br />
Abstract: There's an old and popular analogy between circles and finite fields. I'll describe some constructions you can make in Lagrangian Floer theory and in microlocal sheaf theory by taking this analogy extremely literally, the main ingredient is an "F-field." An F-field on a manifold M is a local system of algebraically closed fields of characteristic p. When M is symplectic, maybe an F-field should remind you of a B-field, it can be used to change the Fukaya category in about the same way. On M = S^1 times R^3, this version of the Fukaya category is related to Deligne-Lusztig theory, and I found something like a cluster structure on the Deligne-Lusztig pairing varieties by studying it. On M = S^1 times S^1, Yanki Lekili and I have found that this version of the Fukaya category is related to the equal-characteristic version of the Fargues-Fontaine curve; the relationship is homological mirror symmetry.<br />
<br />
===Dean Baskin (Texas A&M)===<br />
<br />
Title: Radiation fields for wave equations<br />
<br />
Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space.<br />
<br />
===Jianfeng Lu (Duke University)===<br />
<br />
Title: Density fitting: Analysis, algorithm and applications<br />
<br />
Abstract: Density fitting considers the low-rank approximation of pair products of eigenfunctions of Hamiltonian operators. It is a very useful tool with many applications in electronic structure theory. In this talk, we will discuss estimates of upper bound of the numerical rank of the pair products of eigenfunctions. We will also introduce the interpolative separable density fitting (ISDF) algorithm, which reduces the computational scaling of the low-rank approximation and can be used for efficient algorithms for electronic structure calculations. Based on joint works with Chris Sogge, Stefan Steinerberger, Kyle Thicke, and Lexing Ying.<br />
<br />
===Alexei Poltoratski (Texas A&M)===<br />
<br />
Title: Completeness of exponentials: Beurling-Malliavin and type problems<br />
<br />
Abstract: This talk is devoted to two old problems of harmonic analysis mentioned in the title. Both<br />
problems ask when a family of complex exponentials is complete (spans) an L^2-space. The Beruling-Malliavin<br />
problem was solved in the early 1960s and I will present its classical solution along with modern generalizations<br />
and applications. I will then discuss history and recent progress in the type problem, which stood open for<br />
more than 70 years.<br />
<br />
===Li-Cheng Tsai (Columbia University)===<br />
<br />
Title: When particle systems meet PDEs<br />
<br />
Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems.<br />
<br />
===Aaron Naber (Northwestern)===<br />
<br />
Title: A structure theory for spaces with lower Ricci curvature bounds.<br />
<br />
Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li.<br />
<br />
<br />
===Vladimir Sverak (Minnesota)===<br />
<br />
Title: PDE aspects of the Navier-Stokes equations and simpler models<br />
<br />
Abstract: Does the Navier-Stokes equation give a reasonably complete description of fluid motion? There seems to be no empirical evidence which would suggest a negative answer (in regimes which are not extreme), but from the purely mathematical point of view, the answer may not be so clear. In the lecture, I will discuss some of the possible scenarios and open problems for both the full equations and simplified models.<br />
<br />
<br />
===Jason McCullough (Iowa State)===<br />
<br />
Title: On the degrees and complexity of algebraic varieties<br />
<br />
Abstract: Given a system of polynomial equations in several variables, there are several natural questions regarding its associated solution set (algebraic variety): What is its dimension? Is it smooth or are there singularities? How is it embedded in affine/projective space? Free resolutions encode answers to all of these questions and are computable with modern computer algebra programs. This begs the question: can one bound the computational complexity of a variety in terms of readily available data? I will discuss two recently solved conjectures of Stillman and Eisenbud-Goto, how they relate to each other, and what they say about the complexity of algebraic varieties.<br />
<br />
===Maksym Radziwill (Caltech)===<br />
<br />
Title: Recent progress in multiplicative number theory<br />
<br />
Abstract: Multiplicative number theory aims to understand the ways in which integers factorize, and the distribution of integers with special multiplicative properties (such as primes). It is a central area of analytic number theory with various connections to L-functions, harmonic analysis, combinatorics, probability etc. At the core of the subject lie difficult questions such as the Riemann Hypothesis, and they set a benchmark for its accomplishments.<br />
An outstanding challenge in this field is to understand the multiplicative properties of integers linked by additive conditions, for instance n and n+ 1. A central conjecture making this precise is the Chowla-Elliott conjecture on correlations of multiplicative functions evaluated at consecutive integers. Until recently this conjecture appeared completely out of reach and was thought to be at least as difficult as showing the existence of infinitely many twin primes. These are also the kind of questions that lie beyond the capability of the Riemann Hypothesis. However recently the landscape of multiplicative number theory has been changing and we are no longer so certain about the limitations of our (new) tools. I will discuss the recent progress on these questions.<br />
<br />
===Jennifer Park (OSU)===<br />
<br />
Title: Rational points on varieties<br />
<br />
Abstract: The question of finding rational solutions to systems of polynomial equations has been investigated at least since the days of Pythagoras, but it is still not completely resolved (and in fact, it has been proven that there will never be an algorithm that answers this question!) Nonetheless, we will discuss various techniques that could answer this question in certain cases, and we will outline some conjectures related to this problem as well.<br />
<br />
===Ju-Lee Kim (MIT)===<br />
<br />
Title: Types and counting automorphic forms<br />
<br />
Abstract: We review the theory of types in representations of p-adic groups and discuss some applications for quantifying automorphic forms.<br />
<br />
===Eviatar Procaccia===<br />
<br />
Title: Can one hear the shape of a random walk?<br />
<br />
Abstract: We consider a Gibbs distribution over random walk paths on the square lattice, proportional to a random weight of the path’s boundary . We show that in the zero temperature limit, the paths condensate around an asymptotic shape. This limit shape is characterized as the minimizer of the functional, mapping open connected subsets of the plane to the sum of their principle eigenvalue and perimeter (with respect to the first passage percolation norm). A prime novel feature of this limit shape is that it is not in the class of Wulff shapes.<br />
Joint work with Marek Biskup (UCLA)<br />
<br />
===Jo Nelson (Rice)===<br />
<br />
Title: Contact Invariants and Reeb Dynamics<br />
<br />
Abstract: Contact geometry is the study of certain geometric structures on odd dimensional smooth manifolds. A contactstructure is a hyperplane field specified by a one form which satisfies a maximum nondegeneracy condition called complete non-integrability. The associated one form is called a contact form and uniquely determines a vector field called the Reeb vector field on the manifold. I will explain how to make use of J-holomorphic curves to obtain a Floer theoretic contact invariant, contact homology, whose chain complex is generated by closed Reeb orbits. In particular, I will explain the pitfalls in defining contact homology and discuss my work, in part joint with Hutchings, which provides rigorous constructions and applications to dynamics via geometric methods. This talk will feature numerous graphics to acclimate people to the realm of contact geometry. <br />
<br />
===Justin Hsu (Madison)===<br />
<br />
Title: From Couplings to Probabilistic Relational Program Logics<br />
<br />
Abstract: Many program properties are relational, comparing the behavior of a program (or even two different programs) on two different inputs. While researchers have developed various techniques for verifying such properties for standard, deterministic programs, relational properties for probabilistic programs have been more challenging. In this talk, I will survey recent developments targeting a range of probabilistic relational properties, with motivations from privacy, cryptography, and machine learning. The key idea is to meld relational program logics with an idea from probability theory, called probabilistic couplings. The logics allow a highly compositional and surprisingly general style of program analysis, supporting clean proofs for a broad array of probabilistic relational properties.<br />
<br />
=== Kavita Ramanan (Brown) ===<br />
Title: Tales of Random Projections<br />
<br />
Abstract: The interplay between geometry and probability in high-dimensional spaces is a subject of active research. Classical theorems in probability theory such as the central limit theorem and Cramer’s theorem can be viewed as providing information about certain scalar projections of high-dimensional product measures. In this talk we will describe the behavior of random projections of more general (possibly non-product) high-dimensional measures, which are of interest in diverse fields, ranging from asymptotic convex geometry to high-dimensional statistics. Although the study of (typical) projections of high-dimensional measures dates back to Borel, only recently has a theory begun to emerge, which in particular identifies the role of certain geometric assumptions that lead to better behaved projections. A particular question of interest is to identify what properties of the high-dimensional measure are captured by its lower-dimensional projections. While fluctuations of these projections have been studied over the past decade, we describe more recent work on the tail behavior of multidimensional projections, and associated conditional limit theorems.<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17340Colloquia2019-04-18T17:55:59Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
==Spring 2019==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Jan 25 '''Room 911'''<br />
| [http://www.users.miamioh.edu/randrib/ Beata Randrianantoanina] (Miami University Ohio) WIMAW<br />
|[[#Beata Randrianantoanina (Miami University Ohio) | Some nonlinear problems in the geometry of Banach spaces and their applications ]]<br />
| Tullia Dymarz<br />
|<br />
|-<br />
|Jan 30 '''Wednesday'''<br />
| Talk rescheduled to Feb 15<br />
|<br />
|-<br />
|Jan 31 '''Thursday'''<br />
| Talk rescheduled to Feb 13<br />
|<br />
|-<br />
|Feb 1<br />
| Talk cancelled due to weather<br />
|<br />
| <br />
|<br />
|-<br />
|Feb 5 '''Tuesday, VV 911'''<br />
| [http://www.math.tamu.edu/~alexei.poltoratski/ Alexei Poltoratski] (Texas A&M University)<br />
|[[#Alexei Poltoratski (Texas A&M)| Completeness of exponentials: Beurling-Malliavin and type problems ]]<br />
| Denisov<br />
|<br />
|-<br />
|Feb 6 '''Wednesday, room 911'''<br />
| [https://lc-tsai.github.io/ Li-Cheng Tsai] (Columbia University)<br />
|[[#Li-Cheng Tsai (Columbia University)| When particle systems meet PDEs ]]<br />
| Anderson<br />
|<br />
|-<br />
|Feb 8<br />
| [https://sites.math.northwestern.edu/~anaber/ Aaron Naber] (Northwestern)<br />
|[[#Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 11 '''Monday'''<br />
| [https://www2.bc.edu/david-treumann/materials.html David Treumann] (Boston College)<br />
|[[#David Treumann (Boston College) | Twisting things in topology and symplectic topology by pth powers ]]<br />
| Caldararu<br />
|<br />
|-<br />
| Feb 13 '''Wednesday'''<br />
| [http://www.math.tamu.edu/~dbaskin/ Dean Baskin] (Texas A&M)<br />
|[[#Dean Baskin (Texas A&M) | Radiation fields for wave equations ]]<br />
| Street<br />
<br />
|-<br />
| Feb 15 <br />
| [https://services.math.duke.edu/~pierce/ Lillian Pierce] (Duke University)<br />
| [[#Lillian Pierce (Duke University) | Short character sums ]]<br />
| Boston and Street<br />
|<br />
|-<br />
|Feb 22<br />
| [https://people.math.osu.edu/cueto.5/ Angelica Cueto] (Ohio State)<br />
|[[#Angelica Cueto (The Ohio State University)| Lines on cubic surfaces in the tropics ]]<br />
| Erman and Corey<br />
|<br />
|-<br />
|March 4 '''Monday'''<br />
| [http://www-users.math.umn.edu/~sverak/ Vladimir Sverak] (Minnesota) <br />
|[[#Vladimir Sverak (Minnesota) | Wasow lecture "PDE aspects of the Navier-Stokes equations and simpler models" ]]<br />
| Kim<br />
|<br />
|-<br />
|March 8<br />
| [https://orion.math.iastate.edu/jmccullo/index.html Jason McCullough] (Iowa State)<br />
|[[#Jason McCullough (Iowa State)| On the degrees and complexity of algebraic varieties ]]<br />
| Erman<br />
|<br />
|-<br />
|March 15<br />
| <s>[http://www.its.caltech.edu/~maksym/ Maksym Radziwill] (Caltech)</s> <b>Talk cancelled</b><br />
|[[#Maksym Radziwill (Caltech) | <s>Recent progress in multiplicative number theory</s> ]]<br />
| Marshall<br />
|<br />
|-<br />
|March 29<br />
| Jennifer Park (OSU)<br />
|[[#Jennifer Park (OSU) | Rational points on varieties ]]<br />
| Marshall<br />
|<br />
|-<br />
|April 5<br />
| Ju-Lee Kim (MIT)<br />
|[[#Ju-Lee Kim (MIT) | Types and counting automorphic forms ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 12<br />
| Eviatar Procaccia (TAMU)<br />
|[[#Eviatar Procaccia | Can one hear the shape of a random walk? ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 19<br />
| [http://www.math.rice.edu/~jkn3/ Jo Nelson] (Rice University)<br />
|[[#Jo Nelson (Rice)| Contact Invariants and Reeb Dynamics ]]<br />
| Jean-Luc<br />
|<br />
|-<br />
|April 22 '''Monday'''<br />
| [https://justinh.su Justin Hsu] (Madison)<br />
|[[#Justin Hsu (Madison) | From Couplings to Probabilistic Relational Program Logics ]]<br />
| Lempp<br />
|<br />
|-<br />
|April 26<br />
| [https://www.brown.edu/academics/applied-mathematics/faculty/kavita-ramanan/home Kavita Ramanan] (Brown University)<br />
|[[# Kavita Ramanan (Brown) | Tales of Random Projections ]]<br />
| WIMAW<br />
|<br />
|-<br />
|May 3<br />
| Tomasz Przebinda (Oklahoma)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Beata Randrianantoanina (Miami University Ohio)===<br />
<br />
Title: Some nonlinear problems in the geometry of Banach spaces and their applications.<br />
<br />
Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics.<br />
<br />
===Lillian Pierce (Duke University)===<br />
<br />
Title: Short character sums <br />
<br />
Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations.<br />
<br />
===Angelica Cueto (The Ohio State University)===<br />
Title: Lines on cubic surfaces in the tropics<br />
<br />
Abstract: Since the beginning of tropical geometry, a persistent challenge has been to emulate tropical versions of classical results in algebraic geometry. The well-know statement <i>any smooth surface of degree three in P^3 contains exactly 27 lines</i> is known to be false tropically. Work of Vigeland from 2007 provides examples of tropical cubic surfaces with infinitely many lines and gives a classification of tropical lines on general smooth tropical surfaces in TP^3.<br />
<br />
In this talk I will explain how to correct this pathology by viewing the surface as a del Pezzo cubic and considering its embedding in P^44 via its anticanonical bundle. The combinatorics of the root system of type E_6 and a tropical notion of convexity will play a central role in the construction. This is joint work in progress with Anand Deopurkar.<br />
<br />
===David Treumann (Boston College)===<br />
<br />
Title: Twisting things in topology and symplectic topology by pth powers<br />
<br />
Abstract: There's an old and popular analogy between circles and finite fields. I'll describe some constructions you can make in Lagrangian Floer theory and in microlocal sheaf theory by taking this analogy extremely literally, the main ingredient is an "F-field." An F-field on a manifold M is a local system of algebraically closed fields of characteristic p. When M is symplectic, maybe an F-field should remind you of a B-field, it can be used to change the Fukaya category in about the same way. On M = S^1 times R^3, this version of the Fukaya category is related to Deligne-Lusztig theory, and I found something like a cluster structure on the Deligne-Lusztig pairing varieties by studying it. On M = S^1 times S^1, Yanki Lekili and I have found that this version of the Fukaya category is related to the equal-characteristic version of the Fargues-Fontaine curve; the relationship is homological mirror symmetry.<br />
<br />
===Dean Baskin (Texas A&M)===<br />
<br />
Title: Radiation fields for wave equations<br />
<br />
Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space.<br />
<br />
===Jianfeng Lu (Duke University)===<br />
<br />
Title: Density fitting: Analysis, algorithm and applications<br />
<br />
Abstract: Density fitting considers the low-rank approximation of pair products of eigenfunctions of Hamiltonian operators. It is a very useful tool with many applications in electronic structure theory. In this talk, we will discuss estimates of upper bound of the numerical rank of the pair products of eigenfunctions. We will also introduce the interpolative separable density fitting (ISDF) algorithm, which reduces the computational scaling of the low-rank approximation and can be used for efficient algorithms for electronic structure calculations. Based on joint works with Chris Sogge, Stefan Steinerberger, Kyle Thicke, and Lexing Ying.<br />
<br />
===Alexei Poltoratski (Texas A&M)===<br />
<br />
Title: Completeness of exponentials: Beurling-Malliavin and type problems<br />
<br />
Abstract: This talk is devoted to two old problems of harmonic analysis mentioned in the title. Both<br />
problems ask when a family of complex exponentials is complete (spans) an L^2-space. The Beruling-Malliavin<br />
problem was solved in the early 1960s and I will present its classical solution along with modern generalizations<br />
and applications. I will then discuss history and recent progress in the type problem, which stood open for<br />
more than 70 years.<br />
<br />
===Li-Cheng Tsai (Columbia University)===<br />
<br />
Title: When particle systems meet PDEs<br />
<br />
Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems.<br />
<br />
===Aaron Naber (Northwestern)===<br />
<br />
Title: A structure theory for spaces with lower Ricci curvature bounds.<br />
<br />
Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li.<br />
<br />
<br />
===Vladimir Sverak (Minnesota)===<br />
<br />
Title: PDE aspects of the Navier-Stokes equations and simpler models<br />
<br />
Abstract: Does the Navier-Stokes equation give a reasonably complete description of fluid motion? There seems to be no empirical evidence which would suggest a negative answer (in regimes which are not extreme), but from the purely mathematical point of view, the answer may not be so clear. In the lecture, I will discuss some of the possible scenarios and open problems for both the full equations and simplified models.<br />
<br />
<br />
===Jason McCullough (Iowa State)===<br />
<br />
Title: On the degrees and complexity of algebraic varieties<br />
<br />
Abstract: Given a system of polynomial equations in several variables, there are several natural questions regarding its associated solution set (algebraic variety): What is its dimension? Is it smooth or are there singularities? How is it embedded in affine/projective space? Free resolutions encode answers to all of these questions and are computable with modern computer algebra programs. This begs the question: can one bound the computational complexity of a variety in terms of readily available data? I will discuss two recently solved conjectures of Stillman and Eisenbud-Goto, how they relate to each other, and what they say about the complexity of algebraic varieties.<br />
<br />
===Maksym Radziwill (Caltech)===<br />
<br />
Title: Recent progress in multiplicative number theory<br />
<br />
Abstract: Multiplicative number theory aims to understand the ways in which integers factorize, and the distribution of integers with special multiplicative properties (such as primes). It is a central area of analytic number theory with various connections to L-functions, harmonic analysis, combinatorics, probability etc. At the core of the subject lie difficult questions such as the Riemann Hypothesis, and they set a benchmark for its accomplishments.<br />
An outstanding challenge in this field is to understand the multiplicative properties of integers linked by additive conditions, for instance n and n+ 1. A central conjecture making this precise is the Chowla-Elliott conjecture on correlations of multiplicative functions evaluated at consecutive integers. Until recently this conjecture appeared completely out of reach and was thought to be at least as difficult as showing the existence of infinitely many twin primes. These are also the kind of questions that lie beyond the capability of the Riemann Hypothesis. However recently the landscape of multiplicative number theory has been changing and we are no longer so certain about the limitations of our (new) tools. I will discuss the recent progress on these questions.<br />
<br />
===Jennifer Park (OSU)===<br />
<br />
Title: Rational points on varieties<br />
<br />
Abstract: The question of finding rational solutions to systems of polynomial equations has been investigated at least since the days of Pythagoras, but it is still not completely resolved (and in fact, it has been proven that there will never be an algorithm that answers this question!) Nonetheless, we will discuss various techniques that could answer this question in certain cases, and we will outline some conjectures related to this problem as well.<br />
<br />
===Ju-Lee Kim (MIT)===<br />
<br />
Title: Types and counting automorphic forms<br />
<br />
Abstract: We review the theory of types in representations of p-adic groups and discuss some applications for quantifying automorphic forms.<br />
<br />
===Eviatar Procaccia===<br />
<br />
Title: Can one hear the shape of a random walk?<br />
<br />
Abstract: We consider a Gibbs distribution over random walk paths on the square lattice, proportional to a random weight of the path’s boundary . We show that in the zero temperature limit, the paths condensate around an asymptotic shape. This limit shape is characterized as the minimizer of the functional, mapping open connected subsets of the plane to the sum of their principle eigenvalue and perimeter (with respect to the first passage percolation norm). A prime novel feature of this limit shape is that it is not in the class of Wulff shapes.<br />
Joint work with Marek Biskup (UCLA)<br />
<br />
===Jo Nelson (Rice)===<br />
<br />
Title: Contact Invariants and Reeb Dynamics<br />
<br />
Abstract: Contact geometry is the study of certain geometric structures on odd dimensional smooth manifolds. A contactstructure is a hyperplane field specified by a one form which satisfies a maximum nondegeneracy condition called complete non-integrability. The associated one form is called a contact form and uniquely determines a vector field called the Reeb vector field on the manifold. I will explain how to make use of J-holomorphic curves to obtain a Floer theoretic contact invariant, contact homology, whose chain complex is generated by closed Reeb orbits. In particular, I will explain the pitfalls in defining contact homology and discuss my work, in part joint with Hutchings, which provides rigorous constructions and applications to dynamics via geometric methods. This talk will feature numerous graphics to acclimate people to the realm of contact geometry. <br />
<br />
===Justin Hsu (Madison)===<br />
<br />
Title: From Couplings to Probabilistic Relational Program Logics<br />
<br />
Abstract: Many program properties are relational, comparing the behavior of a program (or even two different programs) on two different inputs. While researchers have developed various techniques for verifying such properties for standard, deterministic programs, relational properties for probabilistic programs have been more challenging. In this talk, I will survey recent developments targeting a range of probabilistic relational properties, with motivations from privacy, cryptography, and machine learning. The key idea is to meld relational program logics with an idea from probability theory, called probabilistic couplings. The logics allow a highly compositional and surprisingly general style of program analysis, supporting clean proofs for a broad array of probabilistic relational properties.<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17092Applied/ACMS2019-03-03T02:33:48Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|Aggregation equations over bounded domains]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison, Math)<br />
|''[[Applied/ACMS/absS19#Jean-Luc Thiffeault (UW-Madison, Math)|The mathematics of burger flipping]]''<br />
| self-hosted<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=17091Applied/ACMS/absS192019-03-03T02:33:04Z<p>Qinli: /* Weiran Sun (Simon Fraser University) */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.<br />
<br />
=== Kui Ren (Columbia Applied math and UT-Austin Mathematics) ===<br />
''Uncertainty Characterization in Model-Based Inverse and Imaging Problems''<br />
<br />
In model-based inverse and imaging problems, it is often the case that only a portion of the relevant physical quantities in the model can be reconstructed/imaged. The rest of the model parameters are assumed to be known. In practice, these parameters are often only known partially (up to a certain accuracy). It is therefore important to characterize the dependence of the inversion/imaging results on the accuracy of these parameters. This is an uncertainty quantification problem that is challenging due to the fact that both the map from the uncertainty parameters (the ones we assumed partially known) to the measured data and the map from the measured data to the quantities to be imaged are difficult to analyze. In this talk, we review some recent computaitonal and mathematical results on such uncertainty characterization problems in nonlinear inverse problems for PDEs.<br />
<br />
=== Nicolas Garcia Trillos (UW-Madison, statistics) ===<br />
''Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs''<br />
<br />
Given a data set $\mathcal{X}=\{x_1, \dots, x_n\}$ and a weighted graph structure $\Gamma= (\mathcal{X},W)$ on $\mathcal{X}$, graph based methods for learning use analytical notions like graph Laplacians, graph cuts, and Sobolev semi-norms to formulate optimization problems whose solutions serve as sensible approaches to machine learning tasks. When the data set consists of samples from a distribution supported on a manifold (or at least approximately so), and the weights depend inversely on the distance between the points, a natural question to study concerns the behavior of those optimization problems as the number of samples goes to infinity. In this talk I will focus on optimization problems closely connected to clustering and supervised regression that involve the graph Laplacian. For clustering, the spectrum of the graph Laplacian is the fundamental object used in the popular spectral clustering algorithm. For regression, the solution to a semilinear elliptic PDE on the graph provides the minimizer of an energy balancing regularization and data fidelity, a sensible object to use in non-parametric regression. <br />
Using tools from optimal transport, calculus of variations, and analysis of PDEs, I will discuss a series of results establishing the asymptotic consistency (with rates of convergence) of many of these analytical objects, as well as provide some perspectives on future research directions.<br />
<br />
=== Weiran Sun (Simon Fraser University) ===<br />
''Aggregation equations over bounded domains''<br />
<br />
Numerical computations have shown that due to the boundary effect, solutions of aggregation equations can evolve into non-energy minimizing states. Meanwhile, adding a small noise seems to bypass such non- energy minimizers. This motivates our study of aggregation equations over bounded domains. In this talk we will use basic probabilistic methods to show well-posedness and mean-field limits of aggregation equations with singular potentials (such as the Newtonian potential). We will also show the zero-diffusion limit of aggregations equations over bounded domains and obtain a convergence rate that is consistent with what has been observed in numerical simulations. This is joint work with Razvan Fetecau, Hui Huang, and Daniel Messenger.<br />
<br />
=== Jean-Luc Thiffeault (UW-Madison, Math) ===<br />
<br />
''The mathematics of burger flipping''<br />
<br />
Ever since the dawn of time people have (literally) asked the question<br />
&mdash; what is the most effective way to grill food? Timing is<br />
everything, since only one surface is exposed to heat at a given time.<br />
Should we flip only once, or many times? I will show a simple model<br />
of cooking by flipping, and some interesting mathematics will emerge.<br />
The rate of cooking depends on the spectrum of a linear operator, and<br />
on the fixed point of a map. If the system is symmetric, the rate of<br />
cooking becomes independent of the sequence of flips, as long as the<br />
last point to be cooked is the midpoint. This toy problem has some<br />
characteristics reminiscent of more realistic scenarios, such as<br />
thermal convection and heat exchangers.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=17090Applied/ACMS/absS192019-03-03T02:32:51Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.<br />
<br />
=== Kui Ren (Columbia Applied math and UT-Austin Mathematics) ===<br />
''Uncertainty Characterization in Model-Based Inverse and Imaging Problems''<br />
<br />
In model-based inverse and imaging problems, it is often the case that only a portion of the relevant physical quantities in the model can be reconstructed/imaged. The rest of the model parameters are assumed to be known. In practice, these parameters are often only known partially (up to a certain accuracy). It is therefore important to characterize the dependence of the inversion/imaging results on the accuracy of these parameters. This is an uncertainty quantification problem that is challenging due to the fact that both the map from the uncertainty parameters (the ones we assumed partially known) to the measured data and the map from the measured data to the quantities to be imaged are difficult to analyze. In this talk, we review some recent computaitonal and mathematical results on such uncertainty characterization problems in nonlinear inverse problems for PDEs.<br />
<br />
=== Nicolas Garcia Trillos (UW-Madison, statistics) ===<br />
''Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs''<br />
<br />
Given a data set $\mathcal{X}=\{x_1, \dots, x_n\}$ and a weighted graph structure $\Gamma= (\mathcal{X},W)$ on $\mathcal{X}$, graph based methods for learning use analytical notions like graph Laplacians, graph cuts, and Sobolev semi-norms to formulate optimization problems whose solutions serve as sensible approaches to machine learning tasks. When the data set consists of samples from a distribution supported on a manifold (or at least approximately so), and the weights depend inversely on the distance between the points, a natural question to study concerns the behavior of those optimization problems as the number of samples goes to infinity. In this talk I will focus on optimization problems closely connected to clustering and supervised regression that involve the graph Laplacian. For clustering, the spectrum of the graph Laplacian is the fundamental object used in the popular spectral clustering algorithm. For regression, the solution to a semilinear elliptic PDE on the graph provides the minimizer of an energy balancing regularization and data fidelity, a sensible object to use in non-parametric regression. <br />
Using tools from optimal transport, calculus of variations, and analysis of PDEs, I will discuss a series of results establishing the asymptotic consistency (with rates of convergence) of many of these analytical objects, as well as provide some perspectives on future research directions.<br />
<br />
=== Weiran Sun (Simon Fraser University) ===<br />
''Aggregation equations over bounded domains'<br />
<br />
Numerical computations have shown that due to the boundary effect, solutions of aggregation equations can evolve into non-energy minimizing states. Meanwhile, adding a small noise seems to bypass such non- energy minimizers. This motivates our study of aggregation equations over bounded domains. In this talk we will use basic probabilistic methods to show well-posedness and mean-field limits of aggregation equations with singular potentials (such as the Newtonian potential). We will also show the zero-diffusion limit of aggregations equations over bounded domains and obtain a convergence rate that is consistent with what has been observed in numerical simulations. This is joint work with Razvan Fetecau, Hui Huang, and Daniel Messenger.<br />
<br />
=== Jean-Luc Thiffeault (UW-Madison, Math) ===<br />
<br />
''The mathematics of burger flipping''<br />
<br />
Ever since the dawn of time people have (literally) asked the question<br />
&mdash; what is the most effective way to grill food? Timing is<br />
everything, since only one surface is exposed to heat at a given time.<br />
Should we flip only once, or many times? I will show a simple model<br />
of cooking by flipping, and some interesting mathematics will emerge.<br />
The rate of cooking depends on the spectrum of a linear operator, and<br />
on the fixed point of a map. If the system is symmetric, the rate of<br />
cooking becomes independent of the sequence of flips, as long as the<br />
last point to be cooked is the midpoint. This toy problem has some<br />
characteristics reminiscent of more realistic scenarios, such as<br />
thermal convection and heat exchangers.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17089Applied/ACMS2019-03-03T02:31:26Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|AGGREGATION EQUATIONS OVER BOUNDED DOMAINS]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison, Math)<br />
|''[[Applied/ACMS/absS19#Jean-Luc Thiffeault (UW-Madison, Math)|The mathematics of burger flipping]]''<br />
| self-hosted<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=17082Applied/ACMS/absS192019-03-02T00:12:32Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.<br />
<br />
=== Kui Ren (Columbia Applied math and UT-Austin Mathematics) ===<br />
''Uncertainty Characterization in Model-Based Inverse and Imaging Problems''<br />
<br />
In model-based inverse and imaging problems, it is often the case that only a portion of the relevant physical quantities in the model can be reconstructed/imaged. The rest of the model parameters are assumed to be known. In practice, these parameters are often only known partially (up to a certain accuracy). It is therefore important to characterize the dependence of the inversion/imaging results on the accuracy of these parameters. This is an uncertainty quantification problem that is challenging due to the fact that both the map from the uncertainty parameters (the ones we assumed partially known) to the measured data and the map from the measured data to the quantities to be imaged are difficult to analyze. In this talk, we review some recent computaitonal and mathematical results on such uncertainty characterization problems in nonlinear inverse problems for PDEs.<br />
<br />
=== Nicolas Garcia Trillos (UW-Madison, statistics) ===<br />
''Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs''<br />
<br />
Given a data set $\mathcal{X}=\{x_1, \dots, x_n\}$ and a weighted graph structure $\Gamma= (\mathcal{X},W)$ on $\mathcal{X}$, graph based methods for learning use analytical notions like graph Laplacians, graph cuts, and Sobolev semi-norms to formulate optimization problems whose solutions serve as sensible approaches to machine learning tasks. When the data set consists of samples from a distribution supported on a manifold (or at least approximately so), and the weights depend inversely on the distance between the points, a natural question to study concerns the behavior of those optimization problems as the number of samples goes to infinity. In this talk I will focus on optimization problems closely connected to clustering and supervised regression that involve the graph Laplacian. For clustering, the spectrum of the graph Laplacian is the fundamental object used in the popular spectral clustering algorithm. For regression, the solution to a semilinear elliptic PDE on the graph provides the minimizer of an energy balancing regularization and data fidelity, a sensible object to use in non-parametric regression. <br />
Using tools from optimal transport, calculus of variations, and analysis of PDEs, I will discuss a series of results establishing the asymptotic consistency (with rates of convergence) of many of these analytical objects, as well as provide some perspectives on future research directions.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17081Applied/ACMS2019-03-02T00:11:26Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17078Applied/ACMS2019-03-01T23:21:23Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17067Applied/ACMS2019-02-28T16:41:35Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.duke.edu/people/hau-tieng-wu Hau-tieng Wu] (Duke)<br />
|''[[Applied/ACMS/absS19#Hau-tieng Wu (Duke)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16924Applied/ACMS/absS192019-02-14T02:44:35Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.<br />
<br />
=== Kui Ren (Columbia Applied math and UT-Austin Mathematics) ===<br />
''Uncertainty Characterization in Model-Based Inverse and Imaging Problems''<br />
<br />
In model-based inverse and imaging problems, it is often the case that only a portion of the relevant physical quantities in the model can be reconstructed/imaged. The rest of the model parameters are assumed to be known. In practice, these parameters are often only known partially (up to a certain accuracy). It is therefore important to characterize the dependence of the inversion/imaging results on the accuracy of these parameters. This is an uncertainty quantification problem that is challenging due to the fact that both the map from the uncertainty parameters (the ones we assumed partially known) to the measured data and the map from the measured data to the quantities to be imaged are difficult to analyze. In this talk, we review some recent computaitonal and mathematical results on such uncertainty characterization problems in nonlinear inverse problems for PDEs.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16923Applied/ACMS2019-02-14T02:43:26Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.duke.edu/people/hau-tieng-wu Hau-tieng Wu] (Duke)<br />
|''[[Applied/ACMS/absS19#Hau-tieng Wu (Duke)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16839Applied/ACMS2019-02-06T04:55:35Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.duke.edu/people/hau-tieng-wu Hau-tieng Wu] (Duke)<br />
|''[[Applied/ACMS/absS19#Hau-tieng Wu (Duke)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16817Applied/ACMS/absS192019-02-04T18:56:04Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning'''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16816Applied/ACMS2019-02-04T18:54:41Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16781Applied/ACMS/absS192019-01-30T04:05:57Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning'''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16780Applied/ACMS/absS192019-01-30T04:05:13Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Amy Cochran (UW-Madison, math and medical school) ===<br />
''A model of online latent state learning'''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.</div>Qinlihttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16779Applied/ACMS/absS192019-01-30T04:04:56Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Amy Cochran (UW-Madison, math and medical school) ==<br />
''A model of online latent state learning'''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.</div>Qinli