https://www.math.wisc.edu/wiki/api.php?action=feedcontributions&user=Smdavis7&feedformat=atomUW-Math Wiki - User contributions [en]2020-10-01T08:20:59ZUser contributionsMediaWiki 1.30.1https://www.math.wisc.edu/wiki/index.php?title=Main_Page&diff=18617Main Page2020-01-12T20:07:59Z<p>Smdavis7: /* Other */</p>
<hr />
<div><br />
== Welcome to the University of Wisconsin Math Department Wiki ==<br />
<br />
This site is by and for the faculty, students and staff of the UW Mathematics Department. It contains useful information about the department, not always available from other sources. Pages can only be edited by members of the department but are viewable by everyone. <br />
<br />
*[[Getting Around Van Vleck]]<br />
<br />
*[[Computer Help]] <br />
<br />
*[[Connecting/Using our research servers]]<br />
<br />
*[[Graduate Student Guide]]<br />
<br />
*[[Teaching Resources]]<br />
<br />
== Research groups at UW-Madison ==<br />
<br />
*[[Algebra]]<br />
*[[Analysis]]<br />
*[[Applied|Applied Mathematics]]<br />
*[https://www.math.wisc.edu/wiki/index.php/Research_at_UW-Madison_in_DifferentialEquations Differential Equations]<br />
*[[Dynamics Special Lecture]]<br />
*[[Geometry and Topology]]<br />
* [http://www.math.wisc.edu/~lempp/logic.html Logic]<br />
*[[Probability]]<br />
<br />
== Math Seminars at UW-Madison ==<br />
<br />
*[[Colloquia|Colloquium]]<br />
*[[Algebra_and_Algebraic_Geometry_Seminar|Algebra and Algebraic Geometry Seminar]]<br />
*[[Analysis_Seminar|Analysis Seminar]]<br />
*[[Applied/ACMS|Applied and Computational Math Seminar]]<br />
*[http://www.math.wisc.edu/~zcharles/aas/index.html Applied Algebra Seminar]<br />
*[[Cookie_seminar|Cookie Seminar]]<br />
*[[Geometry_and_Topology_Seminar|Geometry and Topology Seminar]]<br />
*[[Group_Theory_Seminar|Group Theory Seminar]]<br />
*[[Matroids_seminar|Matroids seminar]]<br />
*[[Networks_Seminar|Networks Seminar]]<br />
*[[NTS|Number Theory Seminar]]<br />
*[[PDE_Geometric_Analysis_seminar| PDE and Geometric Analysis Seminar]]<br />
*[[Probability_Seminar|Probability Seminar]]<br />
* [http://www.math.wisc.edu/~lempp/conf/swlc.html Southern Wisconsin Logic Colloquium]<br />
*[[Research Recruitment Seminar]]<br />
<br />
=== Graduate Student Seminars ===<br />
<br />
*[[AMS_Student_Chapter_Seminar|AMS Student Chapter Seminar]]<br />
*[[Graduate_Algebraic_Geometry_Seminar|Graduate Algebraic Geometry Seminar]]<br />
*[[Graduate_Applied_Algebra_Seminar|Graduate Applied Algebra Seminar]]<br />
*[[Applied/GPS| GPS Applied Math Seminar]]<br />
*[[NTSGrad_Fall_2019|Graduate Number Theory/Representation Theory Seminar]]<br />
*[[Symplectic_Geometry_Seminar|Symplectic Geometry Seminar]]<br />
*[[Math843Seminar| Math 843 Homework Seminar]]<br />
*[[Graduate_student_reading_seminar|Graduate Probability Reading Seminar]]<br />
*[[Summer_stacks|Summer 2012 Stacks Reading Group]]<br />
*[[Graduate_Student_Singularity_Theory]]<br />
*[[Graduate/Postdoc Topology and Singularities Seminar]]<br />
*[[Shimura Varieties Reading Group]]<br />
*[[Summer graduate harmonic analysis seminar]]<br />
*[[Graduate Logic Seminar]]<br />
*[[SIAM Student Chapter Seminar]]<br />
*[[Summer 2019 Algebraic Geometry Reading Group]]<br />
*[[CCA Reading Group]]<br />
<br />
=== Other ===<br />
*[https://sites.google.com/site/uwmadisondrp/home Directed Reading Program]<br />
*[[Madison Math Circle]]<br />
*[[High School Math Night]]<br />
*[http://www.siam-uw.org/ UW-Madison SIAM Student Chapter]<br />
*[http://www.math.wisc.edu/%7Emathclub/ UW-Madison Math Club]<br />
*[[Putnam Club]]<br />
*[[Undergraduate Math Competition]]<br />
*[[Basic Linux Seminar]]<br />
*[[Basic HTML Seminar]]<br />
<br />
== Graduate Program ==<br />
<br />
* [[Algebra Qualifying Exam]]<br />
* [[Analysis Qualifying Exam]]<br />
* [[Topology Qualifying Exam]]<br />
<br />
== Undergraduate Program ==<br />
<br />
* [[Overview of the undergraduate math program|Overview]]<br />
* [[Groups looking to hire students as tutors]]<br />
<br />
== Getting started with Wiki-stuff ==<br />
<br />
Consult the [http://meta.wikimedia.org/wiki/Help:Contents User's Guide] for information on using the wiki software.<br />
* [http://www.mediawiki.org/wiki/Manual:Configuration_settings Configuration settings list]<br />
* [http://www.mediawiki.org/wiki/Manual:FAQ MediaWiki FAQ]<br />
* [http://lists.wikimedia.org/mailman/listinfo/mediawiki-announce MediaWiki release mailing list]</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=Main_Page&diff=18616Main Page2020-01-12T20:07:11Z<p>Smdavis7: /* Other */</p>
<hr />
<div><br />
== Welcome to the University of Wisconsin Math Department Wiki ==<br />
<br />
This site is by and for the faculty, students and staff of the UW Mathematics Department. It contains useful information about the department, not always available from other sources. Pages can only be edited by members of the department but are viewable by everyone. <br />
<br />
*[[Getting Around Van Vleck]]<br />
<br />
*[[Computer Help]] <br />
<br />
*[[Connecting/Using our research servers]]<br />
<br />
*[[Graduate Student Guide]]<br />
<br />
*[[Teaching Resources]]<br />
<br />
== Research groups at UW-Madison ==<br />
<br />
*[[Algebra]]<br />
*[[Analysis]]<br />
*[[Applied|Applied Mathematics]]<br />
*[https://www.math.wisc.edu/wiki/index.php/Research_at_UW-Madison_in_DifferentialEquations Differential Equations]<br />
*[[Dynamics Special Lecture]]<br />
*[[Geometry and Topology]]<br />
* [http://www.math.wisc.edu/~lempp/logic.html Logic]<br />
*[[Probability]]<br />
<br />
== Math Seminars at UW-Madison ==<br />
<br />
*[[Colloquia|Colloquium]]<br />
*[[Algebra_and_Algebraic_Geometry_Seminar|Algebra and Algebraic Geometry Seminar]]<br />
*[[Analysis_Seminar|Analysis Seminar]]<br />
*[[Applied/ACMS|Applied and Computational Math Seminar]]<br />
*[http://www.math.wisc.edu/~zcharles/aas/index.html Applied Algebra Seminar]<br />
*[[Cookie_seminar|Cookie Seminar]]<br />
*[[Geometry_and_Topology_Seminar|Geometry and Topology Seminar]]<br />
*[[Group_Theory_Seminar|Group Theory Seminar]]<br />
*[[Matroids_seminar|Matroids seminar]]<br />
*[[Networks_Seminar|Networks Seminar]]<br />
*[[NTS|Number Theory Seminar]]<br />
*[[PDE_Geometric_Analysis_seminar| PDE and Geometric Analysis Seminar]]<br />
*[[Probability_Seminar|Probability Seminar]]<br />
* [http://www.math.wisc.edu/~lempp/conf/swlc.html Southern Wisconsin Logic Colloquium]<br />
*[[Research Recruitment Seminar]]<br />
<br />
=== Graduate Student Seminars ===<br />
<br />
*[[AMS_Student_Chapter_Seminar|AMS Student Chapter Seminar]]<br />
*[[Graduate_Algebraic_Geometry_Seminar|Graduate Algebraic Geometry Seminar]]<br />
*[[Graduate_Applied_Algebra_Seminar|Graduate Applied Algebra Seminar]]<br />
*[[Applied/GPS| GPS Applied Math Seminar]]<br />
*[[NTSGrad_Fall_2019|Graduate Number Theory/Representation Theory Seminar]]<br />
*[[Symplectic_Geometry_Seminar|Symplectic Geometry Seminar]]<br />
*[[Math843Seminar| Math 843 Homework Seminar]]<br />
*[[Graduate_student_reading_seminar|Graduate Probability Reading Seminar]]<br />
*[[Summer_stacks|Summer 2012 Stacks Reading Group]]<br />
*[[Graduate_Student_Singularity_Theory]]<br />
*[[Graduate/Postdoc Topology and Singularities Seminar]]<br />
*[[Shimura Varieties Reading Group]]<br />
*[[Summer graduate harmonic analysis seminar]]<br />
*[[Graduate Logic Seminar]]<br />
*[[SIAM Student Chapter Seminar]]<br />
*[[Summer 2019 Algebraic Geometry Reading Group]]<br />
*[[CCA Reading Group]]<br />
<br />
=== Other ===<br />
*[https://sites.google.com/site/uwmadisondrp/link Directed Reading Program]<br />
*[[Madison Math Circle]]<br />
*[[High School Math Night]]<br />
*[http://www.siam-uw.org/ UW-Madison SIAM Student Chapter]<br />
*[http://www.math.wisc.edu/%7Emathclub/ UW-Madison Math Club]<br />
*[[Putnam Club]]<br />
*[[Undergraduate Math Competition]]<br />
*[[Basic Linux Seminar]]<br />
*[[Basic HTML Seminar]]<br />
<br />
== Graduate Program ==<br />
<br />
* [[Algebra Qualifying Exam]]<br />
* [[Analysis Qualifying Exam]]<br />
* [[Topology Qualifying Exam]]<br />
<br />
== Undergraduate Program ==<br />
<br />
* [[Overview of the undergraduate math program|Overview]]<br />
* [[Groups looking to hire students as tutors]]<br />
<br />
== Getting started with Wiki-stuff ==<br />
<br />
Consult the [http://meta.wikimedia.org/wiki/Help:Contents User's Guide] for information on using the wiki software.<br />
* [http://www.mediawiki.org/wiki/Manual:Configuration_settings Configuration settings list]<br />
* [http://www.mediawiki.org/wiki/Manual:FAQ MediaWiki FAQ]<br />
* [http://lists.wikimedia.org/mailman/listinfo/mediawiki-announce MediaWiki release mailing list]</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=Graduate_student_reading_seminar&diff=18609Graduate student reading seminar2020-01-10T02:37:56Z<p>Smdavis7: </p>
<hr />
<div>(... in probability)<br />
<br />
<br />
Email list: join-grad_prob_seminar@lists.wisc.edu<br />
<br />
==2018 Fall==<br />
<br />
Tuesday 2:30pm, 901 Van Vleck<br />
<br />
9/24, 10/1: Xiao<br />
<br />
10/8, 10/15: Jakwang<br />
<br />
10/22, 10/29: Evan<br />
<br />
11/5, 11/12: Chaojie<br />
<br />
12/3, 12/10: Tung<br />
<br />
==2019 Spring==<br />
<br />
Tuesday 2:30pm, 901 Van Vleck<br />
<br />
2/5: Timo<br />
<br />
2/12, 2/19: Evan<br />
<br />
2/26, 3/5: Chaojie<br />
<br />
3/12, 3/26: Kurt<br />
<br />
4/2, 4/9: Yu<br />
<br />
4/16, 4/23: Max<br />
<br />
4/30, 5/7: Xiao<br />
<br />
==2018 Fall==<br />
<br />
Tuesday 2:30pm, 901 Van Vleck<br />
<br />
<br />
The topic this semester is large deviation theory. Send me (BV) an email, if you want access to the shared Box folder with some reading material. <br />
<br />
<br />
9/25, 10/2: Dae Han<br />
<br />
10/9, 10/16: Kurt<br />
<br />
10/23, 10/30: Jane Davis<br />
<br />
11/6, 11/13: Brandon Legried <br />
<br />
11/20, 11/27: Shuqi Yu<br />
<br />
12/4, 12/11: Yun Li<br />
<br />
==2018 Spring==<br />
<br />
Tuesday 2:30pm, B135 Van Vleck<br />
<br />
<br />
Preliminary schedule:<br />
<br />
2/20, 2/27: Yun<br />
<br />
3/6, 3/13: Greg<br />
<br />
3/20, 4/3: Yu<br />
<br />
4/10, 4/17: Shuqi<br />
<br />
4/24, 5/1: Tony<br />
<br />
==2017 Fall==<br />
<br />
Tuesday 2:30pm, 214 Ingraham Hall<br />
<br />
<br />
Preliminary schedule: <br />
<br />
9/26, 10/3: Hans<br />
<br />
10/10, 10/17: Guo<br />
<br />
10/24, 10/31: Chaoji<br />
<br />
11/7, 11/14: Yun <br />
<br />
11/21, 11/28: Kurt<br />
<br />
12/5, 12/12: Christian<br />
<br />
<br />
<br />
<br />
==2017 Spring==<br />
<br />
Tuesday 2:25pm, B211<br />
<br />
1/31, 2/7: Fan<br />
<br />
I will talk about the Hanson-Wright inequality, which is a large deviation estimate for random variable of the form X^* A X, where X is a random vector with independent subgaussian entries and A is an arbitrary deterministic matrix. In the first talk, I will present a beautiful proof given by Mark Rudelson and Roman Vershynin. In the second talk, I will talk about some applications of this inequality.<br />
<br />
Reference: M. Rudelson and R. Vershynin, Hanson-Wright inequality and sub-gaussian concentration, Electron. Commun. Probab. Volume 18 (2013).<br />
<br />
3/7, 3/14 : Jinsu<br />
<br />
Title : Donsker's Theorem and its application.<br />
Donsker's Theorem roughly says normalized random walk with linear interpolation on time interval [0,1] weakly converges to the Brownian motion B[0,1] in C([0,1]). It is sometimes called Donsker's invariance principle or the functional central limit theorem. I will show main ideas for the proof of this theorem tomorrow and show a couple of applications in my 2nd talk.<br />
<br />
Reference : https://www.math.utah.edu/~davar/ps-pdf-files/donsker.pdf<br />
<br />
==2016 Fall==<br />
<br />
9/27 Daniele<br />
<br />
Stochastic reaction networks.<br />
<br />
Stochastic reaction networks are continuous time Markov chain models used primarily in biochemistry. I will define them, prove some results that connect them to related deterministic models and introduce some open questions. <br />
<br />
10/4 Jessica<br />
<br />
10/11, 10/18: Dae Han<br />
<br />
10/25, 11/1: Jinsu<br />
<br />
Coupling of Markov processes.<br />
<br />
When we have two distributions on same probability space, we can think of a pair whose marginal probability is each of two distributions.<br />
This pairing can be used to estimate the total variation distance between two distributions. This idea is called coupling method.<br />
I am going to introduce basic concepts,ideas and applications of coupling for Markov processes.<br />
<br />
Links of References<br />
<br />
http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf<br />
<br />
http://websites.math.leidenuniv.nl/probability/lecturenotes/CouplingLectures.pdf<br />
<br />
11/8, 11/15: Hans<br />
<br />
11/22, 11/29: Keith<br />
<br />
Surprisingly Determinental: DPPs and some asymptotics of ASEP <br />
<br />
I'll be reading and presenting some recent papers of Alexei Borodin and a few collaborators which have uncovered certain equivalences between determinental point processes and non-determinental processes.<br />
<br />
<br />
==2016 Spring==<br />
<br />
Tuesday, 2:25pm, B321 Van Vleck<br />
<br />
<br />
3/29, 4/5: Fan Yang<br />
<br />
I will talk about the ergodic decomposition theorem (EDT). More specifically, given a compact metric space X and a continuous transformation T on it, the theorem shows that any T-invariant measure on X can be decomposed into a convex combination of ergodic measures. In the first talk I introduced the EDT and some related facts. In the second talk, I will talk about the conditional measures, and prove that the ergodic measures in EDT are indeed the conditional measures.<br />
<br />
<br />
2/16 : Jinsu<br />
<br />
Lyapunov function for Markov Processes.<br />
<br />
For ODE, we can show stability of the trajectory using Lyapunov functions.<br />
<br />
There is an analogy for Markov Processes. I'd like to talk about the existence of stationary distribution with Lyapunov function.<br />
<br />
In some cases, it is also possible to show the rate of convergence to the stationary distribution.<br />
<br />
==2015 Fall==<br />
<br />
This semester we will focus on tools and methods.<br />
<br />
[https://www.math.wisc.edu/wiki/images/a/ac/Reading_seminar_2015.pdf Seminar notes] ([https://www.dropbox.com/s/f4km7pevwfb1vbm/Reading%20seminar%202015.tex?dl=1 tex file], [https://www.dropbox.com/s/lg7kcgyf3nsukbx/Reading_seminar_2015.bib?dl=1 bib file])<br />
<br />
9/15, 9/22: Elnur<br />
<br />
I will talk about large deviation theory and its applications. For the first talk, my plan is to introduce Gartner-Ellis theorem and show a few applications of it to finite state discrete time Markov chains.<br />
<br />
9/29, 10/6, 10/13 :Dae Han<br />
<br />
10/20, 10/27, 11/3: Jessica<br />
<br />
I will first present an overview of concentration of measure and concentration inequalities with a focus on the connection with related topics in analysis and geometry. Then, I will present Log-Sobolev inequalities and their connection to concentration of measure. <br />
<br />
11/10, 11/17: Hao Kai<br />
<br />
11/24, 12/1, 12/8, 12/15: Chris<br />
<br />
: <br />
<br />
<br />
<br />
<br />
<br />
2016 Spring:<br />
<br />
2/2, 2/9: Louis<br />
<br />
<br />
2/16, 2/23: Jinsu<br />
<br />
3/1, 3/8: Hans<br />
<br />
==2015 Spring==<br />
<br />
<br />
2/3, 2/10: Scott<br />
<br />
An Introduction to Entropy for Random Variables<br />
<br />
In these lectures I will introduce entropy for random variables and present some simple, finite state-space, examples to gain some intuition. We will prove the <br />
MacMillan Theorem using entropy and the law of large numbers. Then I will introduce relative entropy and prove the Markov Chain Convergence Theorem. Finally I will <br />
define entropy for a discrete time process. The lecture notes can be found at http://www.math.wisc.edu/~shottovy/EntropyLecture.pdf.<br />
<br />
2/17, 2/24: Dae Han<br />
<br />
3/3, 3/10: Hans<br />
<br />
3/17, 3/24: In Gun<br />
<br />
4/7, 4/14: Jinsu<br />
<br />
4/21, 4/28: Chris N.<br />
<br />
<br />
<br />
<br />
<br />
<br />
==2014 Fall==<br />
<br />
9/23: Dave<br />
<br />
I will go over Mike Giles’ 2008 paper “Multi-level Monte Carlo path simulation.” This paper introduced a new Monte Carlo method to approximate expectations of SDEs (driven by Brownian motions) that is significantly more efficient than what was the state of the art. This work opened up a whole new field in the numerical analysis of stochastic processes as the basic idea is quite flexible and has found a variety of applications including SDEs driven by Brownian motions, Levy-driven SDEs, SPDEs, and models from biology<br />
<br />
9/30: Benedek<br />
<br />
A very quick introduction to Stein's method. <br />
<br />
I will give a brief introduction to Stein's method, mostly based on the the first couple of sections of the following survey article:<br />
<br />
Ross, N. (2011). Fundamentals of Stein’s method. Probability Surveys, 8, 210-293. <br />
<br />
The following webpage has a huge collection of resources if you want to go deeper: https://sites.google.com/site/yvikswan/about-stein-s-method<br />
<br />
<br />
Note that the Midwest Probability Colloquium (http://www.math.northwestern.edu/mwp/) will have a tutorial program on Stein's method this year. <br />
<br />
10/7, 10/14: Chris J.<br />
[http://www.math.wisc.edu/~janjigia/research/MartingaleProblemNotes.pdf An introduction to the (local) martingale problem.]<br />
<br />
<br />
10/21, 10/28: Dae Han<br />
<br />
11/4, 11/11: Elnur<br />
<br />
11/18, 11/25: Chris N. Free Probability with an emphasis on C* and Von Neumann Algebras<br />
<br />
12/2, 12/9: Yun Zhai<br />
<br />
==2014 Spring==<br />
<br />
<br />
1/28: Greg<br />
<br />
2/04, 2/11: Scott <br />
<br />
[http://www.math.wisc.edu/~shottovy/BLT.pdf Reflected Brownian motion, Occupation time, and applications.] <br />
<br />
2/18: Phil-- Examples of structure results in probability theory.<br />
<br />
2/25, 3/4: Beth-- Derivative estimation for discrete time Markov chains<br />
<br />
3/11, 3/25: Chris J [http://www.math.wisc.edu/~janjigia/research/stationarytalk.pdf Some classical results on stationary distributions of Markov processes]<br />
<br />
4/1, 4/8: Chris N <br />
<br />
4/15, 4/22: Yu Sun<br />
<br />
4/29. 5/6: Diane<br />
<br />
==2013 Fall==<br />
<br />
9/24, 10/1: Chris<br />
[http://www.math.wisc.edu/~janjigia/research/metastabilitytalk.pdf A light introduction to metastability]<br />
<br />
10/8, Dae Han<br />
Majoring multiplicative cascades for directed polymers in random media<br />
<br />
10/15, 10/22: no reading seminar<br />
<br />
10/29, 11/5: Elnur<br />
Limit fluctuations of last passage times <br />
<br />
11/12: Yun<br />
Helffer-Sjostrand representation and Brascamp-Lieb inequality for stochastic interface models<br />
<br />
11/19, 11/26: Yu Sun<br />
<br />
12/3, 12/10: Jason<br />
<br />
==2013 Spring==<br />
<br />
2/13: Elnur <br />
<br />
Young diagrams, RSK correspondence, corner growth models, distribution of last passage times. <br />
<br />
2/20: Elnur<br />
<br />
2/27: Chris<br />
<br />
A brief introduction to enlargement of filtration and the Dufresne identity<br />
[http://www.math.wisc.edu/~janjigia/research/Presentation%20Notes.pdf Notes]<br />
<br />
3/6: Chris<br />
<br />
3/13: Dae Han<br />
<br />
An introduction to random polymers<br />
<br />
3/20: Dae Han<br />
<br />
Directed polymers in a random environment: path localization and strong disorder<br />
<br />
4/3: Diane<br />
<br />
Scale and Speed for honest 1 dimensional diffusions<br />
<br />
References: <br><br />
Rogers & Williams - Diffusions, Markov Processes and Martingales <br><br />
Ito & McKean - Diffusion Processes and their Sample Paths <br><br />
Breiman - Probability <br><br />
http://www.statslab.cam.ac.uk/~beresty/Articles/diffusions.pdf<br />
<br />
4/10: Diane<br />
<br />
4/17: Yun<br />
<br />
Introduction to stochastic interface models<br />
<br />
4/24: Yun<br />
<br />
Dynamics and Gaussian equilibrium sytems<br />
<br />
5/1: This reading seminar will be shifted because of a probability seminar.<br />
<br />
<br />
5/8: Greg, Maso<br />
<br />
The Bethe ansatz vs. The Replica Trick. This lecture is an overview of the two <br />
approaches. See [http://arxiv.org/abs/1212.2267] for a nice overview.<br />
<br />
5/15: Greg, Maso<br />
<br />
Rigorous use of the replica trick.</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18608AMS Student Chapter Seminar2020-01-10T02:37:20Z<p>Smdavis7: </p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Spring 2020 ==<br />
<br />
=== February 5, Alex Mine===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== February 12, TBD===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== February 19, TBD===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== February 26, TBD===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== March 4, TBD===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Jane Davis===<br />
<br />
Title: Brownian Minions<br />
<br />
Abstract: Having lots of small minions help you perform a task is often very effective. For example, if you need to grade a large stack of calculus problems, it is effective to have several TAs grade parts of the pile for you. We'll talk about how we can use random motions as minions to help us perform mathematical tasks. Typically, this mathematical task would be optimization, but we'll reframe a little bit and focus on art and beauty instead. We'll also try to talk about the so-called "storytelling metric," which is relevant here. There will be pictures and animations! 🎉<br />
<br />
Sneak preview: some modern art generated with MATLAB.<br />
<br />
[[File:Picpic.jpg]]<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: Matroid Bingo<br />
<br />
Abstract: Matroids are combinatorial objects that generalize graphs and matrices. The famous combinatorialist Gian Carlo Rota once said that "anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day." Although his day was in the 60s and 70s, matroids remain an active area of current research with connections to areas such as algebraic geometry, tropical geometry, and parts of computer science. Since this is a doughnut talk, I will introduce matroids in a cute way that involves playing bingo, and then I'll show you some cool examples.<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: The method of stationary phase and Duistermaat-Heckman formula<br />
<br />
Abstract: The oscillatory integral $\int_X e^{itf(x)}\mu=:I(t), t\in \mathbb{R}$ is a fundamental object in analysis. In general, $I(t)$ seldom has an explicit expression as Fourier transform is usually inexplicit. In practice, we are interested in the asymptotic behavior of $I(t)$, that is, for $|t|$ very large. A classical tool of getting an approximation is the method of stationary phase which gives the leading term of $I(t)$. Furthermore, there are rare instances for which the approximation coincides with the exact value of $I(t)$. One example is the Duistermaat-Heckman formula in which the Hamiltonian action and the momentum map are addressed. In the talk, I will start with basic facts in Fourier analysis, then discuss the method of stationary phase and the Duistermaat-Heckman formula.<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: Coupling and its application in stochastic chemical reaction network<br />
<br />
Abstract: Stochastic models for chemical reaction networks have become increasingly popular in the past few decades. When the molecules are present in low numbers, the chemical system always displays randomness in their dynamics, and the randomness cannot be ignored as it can have a significant effect on the overall properties of the dynamics. In this talk, I will introduce the stochastic models utilized in the context of biological interaction network. Then I will discuss coupling in this context, and illustrate through examples how coupling methods can be utilized for numerical simulations. Specifically, I will introduce two biological models, which attempts to address the behavior of interesting real-world phenomenon.</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18399AMS Student Chapter Seminar2019-11-12T00:11:23Z<p>Smdavis7: /* November 13, Stephen Davis */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: Brownian Minions<br />
<br />
Abstract: Having lots of small minions help you perform a task is often very effective. For example, if you need to grade a large stack of calculus problems, it is effective to have several TAs grade parts of the pile for you. We'll talk about how we can use random motions as minions to help us perform mathematical tasks. Typically, this mathematical task would be optimization, but we'll reframe a little bit and focus on art and beauty instead. We'll also try to talk about the so-called "storytelling metric," which is relevant here. There will be pictures and animations! 🎉<br />
<br />
Sneak preview: some modern art generated with MATLAB.<br />
<br />
[[File:Picpic.jpg]]<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18385AMS Student Chapter Seminar2019-11-10T21:31:44Z<p>Smdavis7: </p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: Brownian Minions<br />
<br />
Abstract: Having lots of small minions help you perform a task is often very effective. For example, if you need to grade a large stack of calculus problems, it is effective to have several TAs grade parts of the pile for you. We'll talk about how we can use Brownian motions as minions to help us perform mathematical tasks. Typically, this mathematical task would be optimization, but we'll reframe a little bit and focus on art and beauty instead. We'll also try to talk about the so-called "storytelling metric," which is relevant here. There will be pictures and animations! 🎉<br />
<br />
Sneak preview: some modern art generated with MATLAB.<br />
<br />
[[File:Picpic.jpg]]<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=File:Picpic.jpg&diff=18384File:Picpic.jpg2019-11-10T21:31:25Z<p>Smdavis7: </p>
<hr />
<div></div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18383AMS Student Chapter Seminar2019-11-10T21:30:15Z<p>Smdavis7: /* November 13, Stephen Davis */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: Brownian Minions<br />
<br />
Abstract: Having lots of small minions help you perform a task is often very effective. For example, if you need to grade a large stack of calculus problems, it is effective to have several TAs grade parts of the pile for you. We'll talk about how we can use Brownian motions as minions to help us perform mathematical tasks. Typically, this mathematical task would be optimization, but we'll reframe a little bit and focus on art and beauty instead. We'll also try to talk about the so-called "storytelling metric," which is relevant here. There will be pictures and animations! 🎉<br />
<br />
Sneak preview: some modern art generated with MATLAB.<br />
<br />
[[File:Example.jpg]]<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18351AMS Student Chapter Seminar2019-11-08T01:27:08Z<p>Smdavis7: /* November 13, Stephen Davis */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: <br />
<br />
Abstract: We'll talk about how to see random motions from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, using the so-called "storytelling metric." There will be animations! 🎉<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18350AMS Student Chapter Seminar2019-11-08T01:07:44Z<p>Smdavis7: /* November 13, Stephen Davis */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
'''''Donut Seminar Presents: An Afternoon of Music and Cinema'''''<br />
<br />
Abstract: We'll talk about how to see random motions from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, using the so-called "storytelling metric." There will be animations! 🎉<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18349AMS Student Chapter Seminar2019-11-08T01:07:10Z<p>Smdavis7: /* November 13, Stephen Davis */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
'''''Donut Seminar Presents: An Afternoon of Music and Cinema'''''<br />
<br />
Abstract: We'll talk about how to see random motions from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, using the so-called "storytelling metric." There will be animations! I will try to keep the equation/animation ratio small. 🎉<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18298AMS Student Chapter Seminar2019-11-04T01:19:59Z<p>Smdavis7: /* November 13, Stephen Davis */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: Random Motion<br />
<br />
Abstract: We'll talk about how to see random motions from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, using the so-called "storytelling metric." There will be animations! I will try to keep the equation/animation ratio small. 🎉<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18297AMS Student Chapter Seminar2019-11-04T01:19:41Z<p>Smdavis7: /* November 13, Stephen Davis */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: Kinetic theory in bounded domains<br />
<br />
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: Introduction to Chemical Reaction Network<br />
<br />
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: Random Motion<br />
<br />
Abstract: We'll talk about how to see random motions from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, using the so-called "storytelling metric." There will be animations! I will try to keep the equation/animation ratio small.<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18228AMS Student Chapter Seminar2019-10-22T02:21:06Z<p>Smdavis7: </p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: Random Motion<br />
<br />
Abstract: We'll talk about how to see random motions from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, which will help us see things we couldn't see before.<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18227AMS Student Chapter Seminar2019-10-22T02:20:41Z<p>Smdavis7: /* November 13, Stephen Davis */</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: Random Motion<br />
<br />
Abstract: We'll talk about how to see random motion from different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, which will help us see things we couldn't see before.<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7https://www.math.wisc.edu/wiki/index.php?title=AMS_Student_Chapter_Seminar&diff=18220AMS Student Chapter Seminar2019-10-20T18:06:47Z<p>Smdavis7: stephen davis - title/abstract added</p>
<hr />
<div>The AMS Student Chapter Seminar is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.<br />
<br />
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM<br />
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)<br />
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen<br />
<br />
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.<br />
<br />
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].<br />
<br />
== Fall 2019 ==<br />
<br />
=== October 9, Brandon Boggess===<br />
<br />
Title: An Application of Elliptic Curves to the Theory of Internet Memes<br />
<br />
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!<br />
<br />
[[File:Thumbnail fruit meme.png]]<br />
<br />
=== October 16, Jiaxin Jin===<br />
<br />
Title: Persistence and global stability for biochemical reaction-diffusion systems<br />
<br />
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.<br />
<br />
=== October 23, Erika Pirnes===<br />
<br />
(special edition: carrot seminar)<br />
<br />
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)<br />
<br />
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.<br />
<br />
=== October 30, Yunbai Cao===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 6, Tung Nguyen===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== November 13, Stephen Davis===<br />
<br />
Title: Random Motion<br />
<br />
Abstract: We'll talk about random motion from several different points of view. We'll end up placing one of our favorite random motions in a very creative geometric space, which will help us see things we couldn't see before.<br />
<br />
=== November 20, Colin Crowley===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 4, Xiaocheng Li===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD<br />
<br />
=== December 11, Chaojie Yuan===<br />
<br />
Title: TBD<br />
<br />
Abstract: TBD</div>Smdavis7