1. Let K be a field, and let $f(x) \in K[x]$ be an irreducible polynomial. Suppose that the splitting field L of $f(x)$ is a Galois extension of K (that is, f is separable). Let $\alpha \in L$ be one of the roots of f.
 (a) Show that if $\text{Gal}(L/K)$ is an abelian group, then $L = K(\alpha)$.
 (b) Is the converse statement true? That is, suppose $L = K(\alpha)$; must $\text{Gal}(L/K)$ be abelian?

2. Let A be a real skew-symmetric $n \times n$ matrix such that $\text{im}(A) = \text{ker}(A)$. In particular, $\dim(\text{im}(A)) = n/2$, so n must be even.
 (a) Let V be an $n/2$-dimensional subspace of \mathbb{R}^n. Define a bilinear form $(,)$ on V by
 $$(v, w) = \langle v, Aw \rangle;$$
 here \langle , \rangle is the standard Euclidean product on \mathbb{R}^n. Show that $(,)$ is a skew-symmetric form on V.
 (b) Show that V can be chosen so that the above form $(,)$ is non-degenerate.
 (c) Show that n must be divisible by 4. If you use some facts about non-degenerate skew-symmetric forms, sketch their proofs.

3. Let $\phi : A \to B$ be a homomorphism of commutative rings. Recall that ϕ is said to be integral if every element of $b \in B$ is integral over $\phi(A)$, and that ϕ is finite if B is a finitely generated A-module.
 (a) Give an example of a map of commutative rings $A \to B$ that is integral but not finite.
 (b) Prove the Lying Over Theorem: Let $\phi : A \to B$ be an integral map of commutative rings. If $p \subset A$ is any prime ideal, then there exists a prime ideal $q \subset B$ such that $\phi^{-1}(q) = p$.

4. Let D_k be the dihedral group of order $2k$, where $k \geq 3$.
 (a) Show that the number of automorphisms of the group D_k is equal to $k \cdot \phi(k)$. Here ϕ is Euler’s ϕ-function.
 (b) The automorphisms of D_k form a group; let us denote it by $\text{Aut}(D_k)$. What is the structure of $\text{Aut}(D_k)$? Describe the group as explicitly as you can.

5. Consider the group $\text{GL}_n(\mathbb{Q})$ of invertible $n \times n$ matrices with rational coefficients. Suppose $G \subset \text{GL}_n(\mathbb{Q})$ is a finite subgroup. Prove that every prime factor p of the order $|G|$ satisfies $p \leq n + 1$.