Math 222 Week 4 Homework - Solutions

I.2.3: The key idea here is what they mean by the inequality in each case. In a, it is inequalities of numbers, in b it is inequalities of functions, and in c it is ambiguous. None of the inequalities are true. By direct computation, the integral in a is $\left[x-\frac{x^{3}}{3}\right]_{2}^{4}=\left(4-\frac{64}{3}\right)-\left(2-\frac{8}{3}\right)=-\frac{50}{3}$. Alternatively, we could use the fact that $1-x^{2}$ is always negative on the interval $[2,4]$, so the integral in a must be negative, so the inequality in a is false.
For part b, note that we are integrating $\left(1-x^{2}\right)$ with respect to t, from 2 to 4 . Therefore, the integral is $\left(1-x^{2}\right)(4-2)=2\left(1-x^{2}\right)$. As a function, this is not always positive, so the inequality in b is false. For part c, we are finding $\int\left(1+x^{2}\right) d x=x+\frac{x^{3}}{3}+C$. However, this is not a well-defined function, as it depends on what C we pick. Therefore, it doesn't make sense to ask if $x+\frac{x^{3}}{3}+C>0$, so this inequality can't be true.
I.7.5: Let $I_{n}=\int(\sin x)^{n} d x$. From equation 6.3, we have the formula:

$$
I_{n}=\frac{-1}{n} \sin ^{n-1}(x) \cos (x)+\frac{n-1}{n} I_{n-2}
$$

We need to use this formula to compute $\int \sin ^{2}(x) d x$. Using the formula, we get:

$$
\begin{aligned}
\int \sin ^{2}(x) d x=I_{2} & =\frac{-1}{2} \sin ^{1}(x) \cos (x)+\frac{1}{2} I_{0} \\
& =\frac{-1}{2} \sin (x) \cos (x)+\frac{1}{2} \int \sin ^{0}(x) d x \\
& =\frac{-1}{2} \sin (x) \cos (x)+\frac{1}{2} x+C
\end{aligned}
$$

Alternatively, we can integrate $\sin ^{2}(x)$ using the half angle formula as follows:

$$
\begin{aligned}
\int \sin ^{2}(x) d x & =\int \frac{1}{2}(1-\cos (2 x)) d x \\
& =\frac{1}{2} \int(1-\cos (2 x)) d x \\
& =\frac{1}{2} x-\frac{1}{4} \sin (2 x)+C \\
& =\frac{1}{2} x-\frac{1}{2} \sin (x) \cos (x)+C
\end{aligned}
$$

The last step was using the fact that $\sin (2 x)=2 \sin (x) \cos (x)$. We get the same answer as before.
I.7.20: Let $I_{n}=\int \frac{d x}{\left(1+x^{2}\right)^{n}}$. If you look at the example in 6.4 , you will find that as long as $n \neq 0$, the reduction formula still works. In the case where $n=0$, this becomes $\int \frac{d x}{1}$, which is just $x+C$. Letting $n=-\frac{1}{2}$, we get:

$$
\int \sqrt{1+x^{2}} d x=\int\left(1+x^{2}\right)^{1 / 2} d x=\int \frac{d x}{\left(1+x^{2}\right)^{-1 / 2}}=I_{-1 / 2}
$$

Additionally, we have:

$$
\int \frac{d x}{\sqrt{1+x^{2}}}=\int \frac{d x}{\left(1+x^{2}\right)^{1 / 2}}=I_{1 / 2}
$$

So, using the reduction formula to compare $I_{1 / 2}$ and $I_{-1 / 2}$, we have:

$$
\begin{aligned}
& I_{1 / 2}=I_{-1 / 2+1}=\frac{1}{2(-1 / 2)} \frac{x}{\left(1+x^{2}\right)^{-1 / 2}}+\frac{2(-1 / 2)-1}{2(-1 / 2)} I_{-1 / 2} \\
& \rightarrow I_{1 / 2}=-x \sqrt{1+x^{2}}+2 I_{-1 / 2}
\end{aligned}
$$

I.7.21: We use integration by parts to integrate $\frac{1}{x}$. Let $F=\frac{1}{x}, G^{\prime}=1$. Then $F^{\prime}=\frac{-1}{x^{2}}, G=x$. So, we get:

$$
\begin{aligned}
\int \frac{1}{x} d x & =F G-\int F^{\prime} G d x \\
& =\frac{1}{x} x-\int \frac{-1}{x^{2}} x d x \\
& =1+\int \frac{1}{x} d x
\end{aligned}
$$

Subtracting, we get $\int \frac{1}{x} d x-\int \frac{1}{x} d x=1$. This is not wrong though! Remember that antiderivatives can be different up to a constant. So, let c_{1} be the constant for the first integral, and c_{2} be the constant for the second.

Then $\int \frac{1}{x} d x-\int \frac{1}{x} d x=c_{1}-c_{2}$, a constant. It does not have to equal 0 , so the equation from before makes sense. It just tells us that the two constants c_{1}, c_{2} differ by 1 .
I.9.15: We wish to find $\int \frac{e^{x}}{\sqrt{1+e^{2 x}}} d x$.

First, let $u=e^{x}$. Then $x=\ln (u)$, so $d x=\frac{1}{u} d u$. The integral therefore becomes:

$$
\int \frac{u}{\sqrt{1+u^{2}}} \frac{1}{u} d u=\int \frac{1}{\sqrt{1+u^{2}}} d u
$$

We now have to do another substitution to get rid fo the square root. Let $u=\tan (\theta)$, for $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. Then $d u=\sec ^{2}(\theta) d \theta$. Because $-\frac{\pi}{2}<\theta<\frac{\pi}{2}, \sec (\theta)>0$, so $\sqrt{1+u^{2}}=\sqrt{1+\tan ^{2}(\theta)}=\sec (\theta)$. The integral becomes:

$$
\begin{aligned}
\int \frac{1}{\sqrt{1+u^{2}}} d u & =\int \frac{\sec ^{2}(\theta)}{\sec (\theta)} d \theta \\
& =\int \sec (\theta) d \theta \\
& =\ln |\sec (\theta)+\tan (\theta)|+C
\end{aligned}
$$

We know that $\tan (\theta)=u=e^{x}$, and $\sec (\theta)=\sqrt{1+u^{2}}=\sqrt{1+e^{2 x}}$, so the final answer is:

$$
\ln \left|\sqrt{1+e^{2 x}}+e^{x}\right|+C
$$

I.13.3: We want to find $\int \sqrt{1+x^{2}} d x$. To get rid of the square root, we use a rational substitution. Recall $U(t)=\frac{1}{2}\left(t+\frac{1}{t}\right), V(t)=\frac{1}{2}\left(t-\frac{1}{t}\right)$. Also recall $U^{2}=V^{2}+1$. We do the substitution $x=V, t \geq 1$. So, $d x=V^{\prime} d t$, and our integral becomes:

$$
\begin{aligned}
\int \sqrt{1+x^{2}} d x & =\int \sqrt{1+V^{2}} V^{\prime} d t=\int U V^{\prime} d t \\
& =\int \frac{1}{2}\left(t+\frac{1}{t}\right) \frac{1}{2}\left(1+\frac{1}{t^{2}}\right) d t \\
& =\frac{1}{4} \int t+\frac{2}{t}+\frac{1}{t^{3}} d t \\
& =\frac{1}{4}\left(\frac{t^{2}}{2}+2 \ln |t|-\frac{1}{2 t^{2}}\right)+C \\
& =\frac{1}{8} t^{2}-\frac{1}{8} t^{-2}+\frac{1}{2} \ln |t|+C
\end{aligned}
$$

The easiest way to substitute back in the x is to use the facts (given in the book):

1. $t=U+V$
2. $\frac{1}{t}=U-V$

So, our expression from before becomes:

$$
\begin{aligned}
& \frac{1}{8}(U+V)^{2}-\frac{1}{8}(U-V)^{2}+\frac{1}{2} \ln |U+V|+C \\
& =\frac{1}{8}\left(U^{2}+2 U V+V^{2}\right)-\frac{1}{8}\left(U^{2}-2 U V+V^{2}\right)+\frac{1}{2} \ln |U+V|+C \\
& =\frac{1}{2} U V+\frac{1}{2} \ln |U+V|+C
\end{aligned}
$$

Finally, we can use the fact that $V=x$ and $U=\sqrt{1-V^{2}}=\sqrt{1-x^{2}}$. So the final answer is:

$$
\frac{1}{2} x \sqrt{1-x^{2}}+\frac{1}{2} \ln \left|x+\sqrt{1-x^{2}}\right|+C
$$

Alternatively, you could have used the substitution $x=\tan (\theta)$, and then figured out how to integrate $\sec ^{3}(\theta)$.
I.13.4: We want to integrate $\frac{1}{\sqrt{2 x-x^{2}}}$. We first complete the square.

We get $2 x-x^{2}=-\left(x^{2}-2 x\right)=-\left((x-1)^{2}-1\right)=1-(x-1)^{2}$. Our integral becomes $\int \frac{d x}{\sqrt{1-(x-1)^{2}}}$.
This looks like the derivative of $\arcsin (x-1)$. If you do the substitution, you find that this integrates to $\arcsin (x-1)+C$.
I.13.7: We want to integrate $\frac{1}{\sqrt{4-x^{2}}}$. This looks a lot like the derivative of arcsin. We factor out a 4 from the square root to get:

$$
\begin{aligned}
\int \frac{d x}{\sqrt{4-x^{2}}} & =\int \frac{d x}{2 \sqrt{1-(x / 2)^{2}}} \\
& =\int \frac{d u}{\sqrt{1-u^{2}}}
\end{aligned}
$$

This last step was done using the substitution $u=\frac{x}{2}$. This integrates to $\arcsin (u)+C$, which equals $\arcsin \left(\frac{x}{2}\right)+C$.
I.13.15: We want to find $\int_{1}^{\sqrt{3}} \frac{d x}{x^{2}+1}$. Note that the function within the integral is the derivative of $\arctan (x)$, so the integral equals $\arctan (\sqrt{3})-\arctan (1)$, where we take arctan with range in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
First, we calculate $\arctan (\sqrt{3})$. This equals the angle θ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\tan (\theta)=\sqrt{3}$. By basic trigonometry, we know this is when $\theta=\frac{\pi}{3}$, so $\arctan (\sqrt{ } 3)=\frac{\pi}{3}$. Next, we find $\arctan (1)$. This equals the angle θ such that $\tan (\theta)=1$, so this equals $\frac{\pi}{4}$.

The final answer is $\frac{\pi}{3}-\frac{\pi}{4}$.
I.15.3: Let $u=x^{2}-1$. Then $d u=2 x d x$, so the integral becomes:

$$
\begin{aligned}
\int \frac{x}{\sqrt{x^{2}-1}} d x & =\int \frac{\frac{1}{2} d u}{\sqrt{u}} \\
& =\sqrt{u}+C \\
& =\sqrt{x^{2}-1}+C
\end{aligned}
$$

I.15.8: In this problem, we have a ratio of polynomials, so we use polynomial long division and partial fractions. First, we use polynomial long division since the numerator does not have smaller degree, getting:

$$
\left.x^{2}-36\right) \begin{array}{r}
x^{2}+36 \\
\frac{x^{4}}{-x^{4}+36 x^{2}} \\
\frac{36 x^{2}}{} \\
\frac{-36 x^{2}+1296}{1296}
\end{array}
$$

So, $\frac{x^{4}}{x^{2}-36}=x^{2}+36+\frac{1296}{x^{2}-36}$. So we get:

$$
\begin{aligned}
\int \frac{x^{4}}{x^{2}-36} d x & =\int x^{2}+36+\frac{1296}{x^{2}-36} d x \\
& =\frac{x^{3}}{3}+36 x+1296 \int \frac{1}{x^{2}-36} d x
\end{aligned}
$$

We do partial fractions on $\frac{1}{x^{2}-36}=\frac{1}{(x-6)(x+6)}$. This must equal $\frac{A}{x-6}+\frac{B}{x+6}$ for some A, B. The heavyside method say $A=\left.\frac{1}{x+6}\right|_{x=6}=\frac{1}{12}$, and $B=\left.\frac{1}{x-6}\right|_{x=-6}=\frac{-1}{12}$.

So, the fraction equals $\frac{1}{12(x-6)}-\frac{1}{12(x+6)}$. Integrating this, we get $\frac{1}{12} \ln |x-6|-\frac{1}{12} \ln |x+6|+C$.
The final answer is $\frac{x^{3}}{3}+36 x+1296\left(\frac{1}{12} \ln |x-6|-\frac{1}{12} \ln |x+6|\right)+C$.
I.15.34: We have to use partial fractions in both cases.

For the first, we know:

$$
\frac{1}{x(x-1)(x-2)(x-3)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x-2}+\frac{D}{x-3}
$$

We can use the heavyside method to calculate the coefficients. Using it, we get:

- $A=\frac{1}{(0-1)(0-2)(0-3)}=\frac{-1}{6}$
- $B=\frac{1}{(1)(1-2)(1-3)}=\frac{1}{2}$
- $C=\frac{1}{(2)(2-1)(2-3)}=\frac{-1}{2}$
- $D=\frac{1}{(3)(3-1)(3-2)}=\frac{1}{6}$

Integrating, we get $\frac{-1}{6} \ln |x|+\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x-2|+\frac{1}{6} \ln |x-3|+E$.
For the second, we do almost exactly the same thing. The only thing that is potentially different are the coefficients. Using the heavyside method, they are calculated as follows:

- $A=\frac{(0)^{3}+1}{(0-1)(0-2)(0-3)}=\frac{-1}{6}$
- $B=\frac{(1)^{3}+1}{(1)(1-2)(1-3)}=1$
- $C=\frac{(2)^{3}+1}{(2)(2-1)(2-3)}=\frac{-9}{2}$
- $D=\frac{(3)^{3}+1}{(3)(3-1)(3-2)}=\frac{28}{6}=\frac{14}{3}$

Integrating, we get $\frac{-1}{6} \ln |x|+\ln |x-1|-\frac{9}{2} \ln |x-2|+\frac{14}{3} \ln |x-3|+E$.
I.15.35: This is a ratio of polynomials, so we'd like to use partial fractions. To do that, we need to factor the denominator, $1+x+x^{2}+x^{3}$. As the book hints, this equals $1+x+x^{2}(1+x)$. Factoring out a $(1+x)$, this equals $(1+x)\left(1+x^{2}\right)$. Note that $1+x^{2}$ cannot be broken up any more, as we would have to use $\sqrt{-1}$. So, the two factors are $1+x, 1+x^{2}$.

Based on the method of partial fractions, we find:

$$
\frac{1}{1+x+x^{2}+x^{3}}=\frac{1}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}
$$

We can't use the heavyside method because there is a quadratic factor. So, clearing the denominators instead, we get:

$$
\begin{aligned}
1 & =A\left(x^{2}+1\right)+(B x+C)(x+1) \\
& =A x^{2}+A+B x^{2}+B x+C x+C \\
& =x^{2}(A)+x(B+C)+A+C
\end{aligned}
$$

We must have $A=0, B+C=0, A+C=1$. so, $A=0, B=-1, C=1$. Therefore, our integral is:

$$
\begin{aligned}
\int \frac{d x}{1+x+x^{2}+x^{3}} & =\int \frac{-x+1}{x^{2}+1} d x \\
& =-\int \frac{x}{x^{2}+1} d x+\frac{1}{x^{2}+1}
\end{aligned}
$$

To solve the first integral, we use $u=x^{2}+1$, so $d u=2 x d x$. The integral becomes:

$$
-\int \frac{\frac{1}{2} d u}{u}=-\frac{1}{2} \ln |u|=-\frac{1}{2} \ln \left|x^{2}+1\right|
$$

The second integral is simply $\arctan (x)$, so the final answer is $-\frac{1}{2} \ln \left|x^{2}+1\right|+\arctan (x)+E$.
I.15.38: Once you've drawn the graph, note that it is symmetric around the x-axis. That is, you can reflect it to get the same graph. What this means is that any area above the x-axis (positive area) cancels out with the area below the x-axis, so the area under the curve is 0 .
I.15.43: While the book claims that the function $F(x)$ is an anti-derivative for $f(x)$, it is not! An antiderivative needs to have the correct derivative on the entire interval [0,2]. But $F(x)$ is not differentiable at the point $x=1$. In fact, $F(x)$ is not even continuous here!. You get different values whether you are approaching 1 from the left or the right.

We have:
$\lim _{x \rightarrow 1^{-}} F(x)=\frac{1}{2} x^{2}-\left.x\right|_{x=1}=-\frac{1}{2}$
$\lim _{x \rightarrow 1^{+}} F(x)=x-\left.\frac{1}{2} x^{2}\right|_{x=1}=\frac{1}{2}$
Since $F(x)$ is not continuous at 1 , it is not differentiable for 1 , and so is not an antiderivative for $f(x)$ on the interval $[0,2]$.
I.15.44: The issue here comes from the substitution. Remember that x has domain $[-1,1]$, and $u=1-x^{2}$. Therefore, the book claims that $x=\sqrt{1-u}$. However, $\sqrt{1-u} \geq 0$ for all u, but x needs to be negative at times. This substitution does not work because it does not pass the horizontal line test on the interal $[-1,1]$. When you graph $u=1-x^{2}$ on this interval, you will see that it fails this test.

