I.2.3: The key idea here is what they mean by the inequality in each case. In \(a \), it is inequalities of numbers, in \(b \) it is inequalities of functions, and in \(c \) it is ambiguous. None of the inequalities are true.

By direct computation, the integral in \(a \) is
\[
\left[x - \frac{x^3}{3} \right]_2^4 = (4 - \frac{64}{3}) - (2 - \frac{8}{3}) = -\frac{50}{3}.
\]
Alternatively, we could use the fact that \(1 - x^2 \) is always negative on the interval \([2, 4]\), so the integral in \(a \) must be negative, so the inequality in \(a \) is false.

For part \(b \), note that we are integrating \((1 - x^2) \) with respect to \(t \), from 2 to 4. Therefore, the integral is \((1 - x^2)(4 - 2) = 2(1 - x^2)\). As a function, this is not always positive, so the inequality in \(b \) is false.

For part \(c \), we are finding \(\int (1 + x^2) \, dx = x + \frac{x^3}{3} + C \). However, this is not a well-defined function, as it depends on what \(C \) we pick. Therefore, it doesn’t make sense to ask if \(x + \frac{x^3}{3} + C > 0 \), so this inequality can’t be true.

I.7.5: Let \(I_n = \int (\sin x)^n \, dx \). From equation 6.3, we have the formula:
\[
I_n = -\frac{1}{n} \sin^{n-1}(x) \cos(x) + \frac{n-1}{n} I_{n-2}
\]

We need to use this formula to compute \(\int \sin^2(x) \, dx \). Using the formula, we get:
\[
\int \sin^2(x) \, dx = I_2 = -\frac{1}{2} \sin^1(x) \cos(x) + \frac{1}{2} I_0
\]
\[
= -\frac{1}{2} \sin(x) \cos(x) + \frac{1}{2} \int \sin^0(x) \, dx
\]
\[
= -\frac{1}{2} \sin(x) \cos(x) + \frac{1}{2} x + C
\]

Alternatively, we can integrate \(\sin^2(x) \) using the half angle formula as follows:
\[
\int \sin^2(x) \, dx = \int \frac{1}{2} (1 - \cos(2x)) \, dx
\]
\[
= \frac{1}{2} \int (1 - \cos(2x)) \, dx
\]
\[
= \frac{1}{2} x - \frac{1}{4} \sin(2x) + C
\]
\[
= \frac{1}{2} x - \frac{1}{2} \sin(x) \cos(x) + C
\]

The last step was using the fact that \(\sin(2x) = 2 \sin(x) \cos(x) \). We get the same answer as before.
I.7.20: Let $I_n = \int \frac{dx}{(1+x^2)^n}$. If you look at the example in 6.4, you will find that as long as $n \neq 0$, the reduction formula still works. In the case where $n = 0$, this becomes $\int \frac{dx}{x}$, which is just $x + C$. Letting $n = -\frac{1}{2}$, we get:

$$\int \sqrt{1 + x^2} \, dx = \int (1 + x^2)^{1/2} \, dx = \int \frac{dx}{(1 + x^2)^{-1/2}} = I_{-1/2}$$

Additionally, we have:

$$\int \frac{dx}{\sqrt{1 + x^2}} = \int \frac{dx}{(1 + x^2)^{1/2}} = I_{1/2}$$

So, using the reduction formula to compare $I_{1/2}$ and $I_{-1/2}$, we have:

$$I_{1/2} = I_{-1/2} + \frac{1}{2(-1/2)} \frac{x}{(1 + x^2)^{-1/2}} + \frac{2(-1/2) - 1}{2(-1/2)} I_{-1/2}$$

$$\rightarrow I_{1/2} = -x \sqrt{1 + x^2} + 2I_{-1/2}$$

I.7.21: We use integration by parts to integrate $\frac{1}{x}$. Let $F = \frac{1}{x}, G' = 1$. Then $F' = -\frac{1}{x^2}, G = x$. So, we get:

$$\int \frac{1}{x} \, dx = FG - \int F'G \, dx$$

$$= \frac{1}{x} - \int \frac{-1}{x^2} \, dx$$

$$= 1 + \int \frac{1}{x} \, dx$$

Subtracting, we get $\int \frac{1}{x} \, dx - \int \frac{1}{x} \, dx = 1$. This is not wrong though! Remember that antiderivatives can be different up to a constant. So, let c_1 be the constant for the first integral, and c_2 be the constant for the second.

Then $\int \frac{1}{x} \, dx - \int \frac{1}{x} \, dx = c_1 - c_2$, a constant. It does not have to equal 0, so the equation from before makes sense. It just tells us that the two constants c_1, c_2 differ by 1.

I.9.15: We wish to find $\int \frac{e^x}{\sqrt{1 + e^{2x}}} \, dx$.

First, let $u = e^x$. Then $x = \ln(u)$, so $dx = \frac{1}{u} \, du$. The integral therefore becomes:

$$\int \frac{u}{\sqrt{1 + u^2}} \, \frac{1}{u} \, du = \int \frac{1}{\sqrt{1 + u^2}} \, du$$

We now have to do another substitution to get rid of the square root. Let $u = \tan(\theta)$, for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. Then $du = \sec^2(\theta) \, d\theta$. Because $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, $\sec(\theta) > 0$, so $\sqrt{1 + u^2} = \sqrt{1 + \tan^2(\theta)} = \sec(\theta)$. The integral becomes:

$$\int \frac{1}{\sqrt{1 + u^2}} \, du = \int \frac{\sec^2(\theta)}{\sec(\theta)} \, d\theta$$

$$= \int \sec(\theta) \, d\theta$$

$$= \ln |\sec(\theta) + \tan(\theta)| + C$$
We know that \(\tan(\theta) = u = e^x \), and \(\sec(\theta) = \sqrt{1+u^2} = \sqrt{1+e^{2x}} \), so the final answer is:

\[
\ln |\sqrt{1+e^{2x}} + e^x| + C
\]

I.13.3: We want to find \(\int \sqrt{1+x^2} \, dx \). To get rid of the square root, we use a rational substitution. Recall \(U(t) = \frac{1}{2}(t + \frac{1}{t}) \), \(V(t) = \frac{1}{2}(t - \frac{1}{t}) \). Also recall \(U^2 = V^2 + 1 \). We do the substitution \(x = V, t \geq 1 \). So, \(dx = V' \, dt \), and our integral becomes:

\[
\int \sqrt{1+x^2} \, dx = \int \sqrt{1+V^2}V' \, dt = \int UV' \, dt
\]

\[
= \int \frac{1}{2} (t + \frac{1}{t}) \frac{1}{2} (1 + \frac{1}{t^2}) \, dt
\]

\[
= \frac{1}{4} \int t + \frac{2}{t} + \frac{1}{t^2} \, dt
\]

\[
= \frac{1}{4} \left(\frac{t^2}{2} + 2 \ln |t| - \frac{1}{2t^2} \right) + C
\]

\[
= \frac{1}{8} t^2 - \frac{1}{8} t^{-2} + \frac{1}{2} \ln |t| + C
\]

The easiest way to substitute back in the \(x \) is to use the facts (given in the book):

1. \(t = U + V \)
2. \(\frac{1}{t} = U - V \)

So, our expression from before becomes:

\[
\frac{1}{8} (U + V)^2 - \frac{1}{8} (U - V)^2 + \frac{1}{2} \ln |U + V| + C
\]

\[
= \frac{1}{8} (U^2 + 2UV + V^2) - \frac{1}{8} (U^2 - 2UV + V^2) + \frac{1}{2} \ln |U + V| + C
\]

\[
= \frac{1}{2} UV + \frac{1}{2} \ln |U + V| + C
\]

Finally, we can use the fact that \(V = x \) and \(U = \sqrt{1-V^2} = \sqrt{1-x^2} \). So the final answer is:

\[
\frac{1}{2} x\sqrt{1-x^2} + \frac{1}{2} \ln |x + \sqrt{1-x^2}| + C
\]

Alternatively, you could have used the substitution \(x = \tan(\theta) \), and then figured out how to integrate \(\sec^3(\theta) \).

I.13.4: We want to integrate \(\frac{1}{\sqrt{2x-x^2}} \). We first complete the square.

We get \(2x - x^2 = -(x^2 - 2x) = -(x-1)^2 - 1 = 1 - (x-1)^2 \). Our integral becomes \(\int \frac{dx}{\sqrt{1-(x-1)^2}} \).

This looks like the derivative of \(\arcsin(x-1) \). If you do the substitution, you find that this integrates to \(\arcsin(x-1) + C \).
I.13.7: We want to integrate \(\frac{1}{\sqrt{4-x^2}} \). This looks a lot like the derivative of \(\arcsin \). We factor out a 4 from the square root to get:

\[
\int \frac{dx}{\sqrt{4-x^2}} = \int \frac{dx}{2\sqrt{1-(x/2)^2}} = \int \frac{du}{\sqrt{1-u^2}}
\]

This last step was done using the substitution \(u = \frac{x}{2} \). This integrates to \(\arcsin(u) + C \), which equals \(\arcsin\left(\frac{x}{2}\right) + C \).

I.13.15: We want to find \(\int \sqrt{3} \frac{dx}{x^2+1} \). Note that the function within the integral is the derivative of \(\arctan(x) \), so the integral equals \(\arctan(\sqrt{3}) - \arctan(1) \), where we take \(\arctan \) with range in the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\).

First, we calculate \(\arctan(\sqrt{3}) \). This equals the angle \(\theta \) in \((-\frac{\pi}{2}, \frac{\pi}{2})\) such that \(\tan(\theta) = \sqrt{3} \). By basic trigonometry, we know this is when \(\theta = \frac{\pi}{3} \), so \(\arctan(\sqrt{3}) = \frac{\pi}{3} \). Next, we find \(\arctan(1) \). This equals the angle \(\theta \) such that \(\tan(\theta) = 1 \), so this equals \(\frac{\pi}{4} \).

The final answer is \(\frac{\pi}{3} - \frac{\pi}{4} \).

I.15.3: Let \(u = x^2 - 1 \). Then \(du = 2xdx \), so the integral becomes:

\[
\int \frac{x}{\sqrt{x^2-1}} dx = \int \frac{1}{2} \frac{du}{\sqrt{u}} = \sqrt{u} + C = \sqrt{x^2 - 1} + C
\]

I.15.8: In this problem, we have a ratio of polynomials, so we use polynomial long division and partial fractions. First, we use polynomial long division since the numerator does not have smaller degree, getting:

\[
x^2 - 36)
\begin{array}{c}
\hline
x^4 + 36x^2 \\
-x^4 + 36x^2 \\
\hline
36x^2 \\
-36x^2 + 1296 \\
\hline
1296
\end{array}
\]

So, \(\frac{x^4}{x^2 - 36} = x^2 + 36 + \frac{1296}{x^2 - 36} \). So we get:

\[
\int \frac{x^4}{x^2 - 36} dx = \int x^2 + 36 + \frac{1296}{x^2 - 36} dx = \frac{x^3}{3} + 36x + 1296 \int \frac{1}{x^2 - 36} dx
\]
We do partial fractions on \(\frac{1}{x^2 - 36} = \frac{1}{(x-6)(x+6)} \). This must equal \(\frac{A}{x-6} + \frac{B}{x+6} \) for some \(A, B \). The heavyside method say \(A = \left. \frac{1}{x+6} \right|_{x=6} = \frac{1}{12} \), and \(B = \left. \frac{1}{x-6} \right|_{x=-6} = \frac{-1}{12} \).

So, the fraction equals \(\frac{1}{12(x-6)} - \frac{1}{12(x+6)} \). Integrating this, we get \(\frac{1}{12} \ln |x - 6| - \frac{1}{12} \ln |x + 6| + C \).

The final answer is \(\frac{x^3}{3} + 36x + 1296 \left(\frac{1}{12} \ln |x - 6| - \frac{1}{12} \ln |x + 6| \right) + C \).

I.15.34: We have to use partial fractions in both cases.

For the first, we know:

\[
\frac{1}{x(x-1)(x-2)(x-3)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x-2} + \frac{D}{x-3}
\]

We can use the heavyside method to calculate the coefficients. Using it, we get:

- \(A = \left. \frac{1}{(0-1)(0-2)(0-3)} \right|_{x=0} = -\frac{1}{6} \)
- \(B = \left. \frac{1}{(1)(1-2)(1-3)} \right|_{x=1} = \frac{1}{2} \)
- \(C = \left. \frac{1}{(2)(2-1)(2-3)} \right|_{x=2} = -\frac{1}{2} \)
- \(D = \left. \frac{1}{(3)(3-1)(3-2)} \right|_{x=3} = \frac{1}{6} \)

Integrating, we get \(-\frac{1}{6} \ln |x| + \frac{1}{2} \ln |x-1| - \frac{1}{2} \ln |x-2| + \frac{1}{6} \ln |x-3| + E \).

For the second, we do almost exactly the same thing. The only thing that is potentially different are the coefficients. Using the heavyside method, they are calculated as follows:

- \(A = \left. \frac{(0)^3 + 1}{(0-1)(0-2)(0-3)} \right|_{x=0} = -\frac{1}{6} \)
- \(B = \left. \frac{(1)^3 + 1}{(1)(1-2)(1-3)} \right|_{x=1} = 1 \)
- \(C = \left. \frac{(2)^3 + 1}{(2)(2-1)(2-3)} \right|_{x=2} = -\frac{9}{2} \)
- \(D = \left. \frac{(3)^3 + 1}{(3)(3-1)(3-2)} \right|_{x=3} = \frac{28}{6} = \frac{14}{3} \)

Integrating, we get \(-\frac{1}{6} \ln |x| + \ln |x-1| - \frac{9}{2} \ln |x-2| + \frac{14}{3} \ln |x-3| + E \).

I.15.35: This is a ratio of polynomials, so we’d like to use partial fractions. To do that, we need to factor the denominator, \(1 + x + x^2 + x^3 \). As the book hints, this equals \(1 + x + x^2(1 + x) \). Factoring out a \((1 + x) \), this equals \((1 + x)(1 + x^2) \). Note that \(1 + x^2 \) cannot be broken up any more, as we would have to use \(\sqrt{-1} \). So, the two factors are \(1 + x, 1 + x^2 \).
Based on the method of partial fractions, we find:

\[
\frac{1}{1 + x + x^2 + x^3} = \frac{1}{(x + 1)(x^2 + 1)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}
\]

We can’t use the heavyside method because there is a quadratic factor. So, clearing the denominators instead, we get:

\[
1 = A(x^2 + 1) + (Bx + C)(x + 1)
= Ax^2 + A + Bx^2 + Bx + Cx + C
= x^2(A) + x(B + C) + A + C
\]

We must have \(A = 0, B + C = 0, A + C = 1 \). So, \(A = 0, B = -1, C = 1 \). Therefore, our integral is:

\[
\int \frac{dx}{1 + x + x^2 + x^3} = \int \frac{-x + 1}{x^2 + 1} dx
= -\int \frac{x}{x^2 + 1} dx + \frac{1}{x^2 + 1}
\]

To solve the first integral, we use \(u = x^2 + 1 \), so \(du = 2x dx \). The integral becomes:

\[
-\int \frac{\frac{1}{2}du}{u} = -\frac{1}{2} \ln |u| = -\frac{1}{2} \ln |x^2 + 1|
\]

The second integral is simply \(\arctan(x) \), so the final answer is \(-\frac{1}{2} \ln |x^2 + 1| + \arctan(x) + E \).

I.15.38: Once you’ve drawn the graph, note that it is symmetric around the \(x \)-axis. That is, you can reflect it to get the same graph. What this means is that any area above the \(x \)-axis (positive area) cancels out with the area below the \(x \)-axis, so the area under the curve is 0.

I.15.43: While the book claims that the function \(F(x) \) is an anti-derivative for \(f(x) \), it is not! An antiderivative needs to have the correct derivative on the entire interval \([0, 2]\). But \(F(x) \) is not differentiable at the point \(x = 1 \). In fact, \(F(x) \) is not even continuous here!. You get different values whether you are approaching 1 from the left or the right.

We have:

\[
\lim_{x \to 1^-} F(x) = \lim_{x \to 1^-} \left(\frac{1}{2}x^2 - x \right) = -\frac{1}{2}
\]

\[
\lim_{x \to 1^+} F(x) = \lim_{x \to 1^+} \left(x - \frac{1}{2}x^2 \right) = \frac{1}{2}
\]

Since \(F(x) \) is not continuous at 1, it is not differentiable for 1, and so is not an antiderivative for \(f(x) \) on the interval \([0, 2]\).

I.15.44: The issue here comes from the substitution. Remember that \(x \) has domain \([-1, 1]\), and \(u = 1 - x^2 \). Therefore, the book claims that \(x = \sqrt{1 - u} \). However, \(\sqrt{1 - u} \geq 0 \) for all \(u \), but \(x \) needs to be negative at times. This substitution does not work because it does not pass the horizontal line test on the interval \([-1, 1]\). When you graph \(u = 1 - x^2 \) on this interval, you will see that it fails this test.