Math 764. Homework 7
Due Friday, March 31st

Proper and separated morphisms.

Each scheme X has a maximal closed reduced subscheme X^{red}; the ideal sheaf of X^{red} is the nilradical (the sheaf of all nilpotents in \mathcal{O}_X).

1. Let $f : X \to Y$ be a morphism of schemes of finite type. Consider the induced map $f^{\text{red}} : X^{\text{red}} \to Y^{\text{red}}$. Prove that f is separated (resp. proper) if and only if f^{red} is separated (resp. proper).

Vector bundles.

Fix an algebraically closed field k. Any vector bundle on $\mathbb{A}^1_k = \text{Spec}(k[t])$ is trivial, you can use this without proof. Let X be the 'affine line with a doubled point' obtained by gluing two copies of \mathbb{A}^1_k away from the origin.

2. Classify line bundles on X up to isomorphism.

3. (Could be hard) Prove that any vector bundle on X is a direct sum of several line bundles.

Tangent bundle.

4. Let X be an irreducible affine variety, not necessarily smooth. Let M be the $k[X]$-module of k-linear derivations $k[X] \to k[X]$. (These are globally defined vector fields on X, but keep in mind that X may be singular.) Consider its generic rank $r := \dim_{k(X)} M \otimes_{k[X]} k(X)$. Show that $r = \dim(X)$.

5. Suppose now that X is smooth. Show that the module M is a locally free coherent module; the corresponding vector bundle is the tangent bundle TX.

6. Let $f : X \to Y$ be a morphism of algebraic varieties. Recall that a vector bundle E over Y gives a vector bundle f^*E on X whose total space is the fiber product $E \times_Y X$.

Suppose now that X and Y are affine and Y is smooth. Let $E = TY$ be the tangent bundle to Y. Show that the space of k-linear derivations $k[Y] \to k[X]$ (where f is used to equip $k[X]$ with the structure of a $k[Y]$-module) is identified with $\Gamma(X, f^*(TY))$.

7. Let X be a smooth affine variety. Let $I_\Delta \subset k[X \times X]$ be the ideal sheaf of the diagonal $\Delta \subset X \times X$. Prove that there is a bijection

$$I_\Delta/I^2_\Delta = \Gamma(X, \Omega^1_X),$$

where Ω^1_X is the sheaf of differential 1-forms (that is, the sheaf of sections of the cotangent bundle $T^\vee X$, which is the dual vector bundle of TX).