NUMBER THEORY (11/06/19)

WARM-UP

1. Let \((x, y, z)\) be a solution to \(x^2 + y^2 = z^2\). Show that one of the three numbers is divisible (a) by 3 (b) by 4 (c) by 5.

2. The next to last digit of \(3^n\) is even.

3. What is the last digit of the 2019'th Fibonacci number? (The Fibonacci sequence is defined by \(a_1 = a_2 = 1\), and then \(a_{k+2} = a_k + a_{k+1}\).)

4. For any \(n > 0\), \(2^n\) does not divide \(n!\). (Extra question: can you find all \(n\) such that \(2^n - 1\) divides \(n!\))

ACTUAL COMPETITION PROBLEMS

5. (VT 2013, 4) A positive integer \(n\) is called special if it can be represented in the form
 \[n = \frac{x^2 + y^2}{u^2 + v^2},\]
 for some positive integers \(x, y, u,\) and \(v\). Prove that
 (a) 25 is special;
 (b) 2013 is not special;
 (c) 2014 is not special.

6. (2010-A1) Given a positive integer \(n\), what is the largest \(k\) such that the numbers 1, 2, \ldots, \(n\) can be put into \(k\) boxes so that the sum of the numbers in each box is the same? [When \(n = 8\), the example \(\{1, 2, 3, 6\}, \{4, 8\}, \{5, 7\}\) shows that the largest \(k\) is at least 3.]

7. (2006-A3) Let 1, 2, 3, \ldots, 2005, 2006, 2007, 2009, 2012, 2016, \ldots be a sequence defined by \(x_k = k\) for \(k = 1, \ldots, 2006\) and \(x_{k+1} = x_k + x_{k-2005}\) for \(k \geq 2006\). Show that the sequence has 2005 consecutive terms each divisible by 2006.

8. (2009-B3) Call a subset \(S\) of \(\{1, 2, \ldots, n\}\) mediocre if it has the following property: Whenever \(a\) and \(b\) are elements of \(S\) whose average is an integer, that average is also an element of \(S\). Let \(A(n)\) be the number of mediocre subsets of \(\{1, 2, \ldots, n\}\). [For instance, every subset of \(\{1, 2, 3\}\) except \(\{1, 3\}\) is mediocre, so \(A(3) = 7\).] Find all positive integers \(n\) such that
 \[A(n + 2) - 2A(n + 1) + A(n) = 1.\]
9. (2008-B4) Let p be a prime number. Let $h(x)$ be a polynomial with integer coefficients such that $h(0), h(1), \ldots, h(p^2 - 1)$ are distinct modulo p^2. Show that $h(0), h(1), \ldots, h(p^3 - 1)$ are distinct modulo p^3.

A FEW IMPORTANT FACTS FROM NUMBER THEORY

Standard Conventions. $a|b$ means ‘a divides $b’$, $a \equiv b \mod n$ means ‘a is congruent to b modulo n’, that is, $n|(a - b)$ (or equivalently, a and b have the same remainder when divided by n).

The Chinese Remainder Theorem. If m and n are coprime, then for any a and b there exists a number x such that

\[
\begin{cases}
x \equiv a \mod m \\
x \equiv b \mod n,
\end{cases}
\]

moreover, x is unique modulo mn.

Fermat’s Little Theorem. If a is not divisible by a prime p, then $a^{p-1} \equiv 1 \mod p$. (Version: for any a and any prime p, $a^p \equiv a \mod p$.)

Euler’s Theorem. For any number n, let $\phi(n)$ be the number of integers between 1 and n that are coprime to n. Then for any a that is coprime to n, $a^{\phi(n)} \equiv 1 \mod n$.

Suppose a rational number b/c is a solution of the polynomial equation $a_nx^n + \cdots + a_0 = 0$ whose coefficients are integers. Then $b|a_0$ and $c|a_n$, assuming b/c is reduced.

If $p(x)$ is a polynomial with integer coefficients, then for any integers a and b, $(b-a)|(p(b) - p(a))$.

A number $n \geq 1$ can be written as a sum of two squares if and only if every prime p of the form $4k + 3$ appears in the prime factorization of n an even number of times.
1. The last 2019 digits of an integer a are the same as the last 2019 digits of a^2. How many possibilities are there for these 2019 digits?

2. (2007-B1) Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n) + 1)$ if and only if $n = 1$.

3. (2009-B1) Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,
 \[
 \frac{10}{9} = \frac{2! \cdot 5!}{3! \cdot 3!}.
 \]

4. (2005-A1) Show that every positive integer n is a sum of one or more numbers of the form 2^r3^s, where r and s are non-negative integers and no summand divides another. (For example, $23 = 9 + 8 + 6$.)

5. (2013-A2) Let S be the set of all positive integers that are not perfect squares. For n in S, consider choices of integers a_1, a_2, \ldots, a_r such that $n < a_1 < a_2 < \cdots < a_r$ and $n \cdot a_1 \cdot a_2 \cdots a_r$ is a perfect square, and let $f(n)$ be the minimum of a_r over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3, 2 \cdot 4, 2 \cdot 5, 2 \cdot 3 \cdot 4, 2 \cdot 3 \cdot 5, 2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so $f(2) = 6$. Show that the function f from S onto the integers is one-one.

6. (2008-A3) Start with a finite sequence a_1, a_2, \ldots, a_n of integers. If possible, choose two indices $j < k$ such that a_j does not divide a_k, and replace a_j and a_k by $\gcd(a_j, a_k)$ and $\text{lcm}(a_j, a_k)$ respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made. (Note: \gcd means greatest common divisor and lcm means least common multiple.)

7. (1997-B5) Define $d(n)$ for $n \geq 0$ recursively by $d(0) = 1$, $d(n) = 2d(n-1)$. Show that for every $n \geq 2$,
 \[
 d(n) \equiv d(n-1) \mod n.
 \]

8. (2009-B6) Prove that for every positive integer n, there is a sequence of integers $a_0, a_1, \ldots, a_{2009}$ with $a_0 = 0$ and $a_{2009} = n$ such that each term after a_0 is either an earlier term plus 2^k for some nonnegative integer k, or of the form $b \mod c$ for some earlier terms b and c. [Here $b \mod c$ denotes the remainder when b is divided by c, so $0 \leq (b \mod c) < c$.]