1. Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying
 \[f(x^2 - y^2) = (x - y)(f(x) + f(y)). \]

2. Find all functions $f : \mathbb{R} - \{1\} \to \mathbb{R}$, continuous at 0, that satisfy
 \[f(x) = f\left(\frac{x}{1 - x}\right), \quad x \in \mathbb{R} - \{1\}. \]

3. Find all functions $f : [0, 1] \to \mathbb{R}$ satisfying the following conditions
 \begin{itemize}
 \item $[f(x)] \sin^2 x = [x] \cos f(x) \cos x = f(x)$
 \item $f(f(x)) = f(x)$.
 \end{itemize}

 Here $[x]$ means the fractional part of x.

4. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all reals x, y, z, we have
 \[[f(x) + 1][f(y) + f(z)] = f(xy + z) + f(xz - y). \]

5. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that
 \[f(f(x) + y) = f(f(x) - y) + 4f(x)y, \quad \text{for any } x, y \in \mathbb{R}. \]

6. Let c be a positive integer. The sequence a_1, a_2, \ldots is defined by
 \[a_1 := c, \quad \text{and } a_{n+1} = a_n^2 + a_n + c^3, n \in \mathbb{N}. \]

 Find all values of c for which there exist some integers $k \geq 1$ and $m \geq 2$ such that $a_k^m = c^3$ is the m-th power of some positive integer.

7. (Putnam) Find all functions f from the interval $(1, \infty)$ to $(1, \infty)$ with the following property: if $x, y \in (1, \infty)$ and $x^2 \leq y \leq x^3$, then $(f(x))^2 \leq f(y) \leq (f(x))^3$.

8. Find all differentiable functions $f : (0, \infty) \to (0, \infty)$ for which there is a positive real number a such that
 \[f'(\frac{a}{x}) = \frac{x}{f(x)}, \]
 for all $x > 0$.