Binomial coefficients and generating functions

Botong Wang

February 5, 2020

Binomial coefficients

The binomial coefficients \(\binom{n}{k} \) counts the number of ways one can choose \(k \) objects from given \(n \). They are coefficients in the binomial expansion

\[
(x + 1)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} + \cdots + \binom{n}{n-1} x + \binom{n}{n}.
\]

More explicitly,

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}.
\]

A very useful formula for the binomial coefficients is

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.
\]

Here are two simple exercises about binomial coefficients.

- Prove that if \(n = 2^m \) with \(m \) a positive integer, then

\[
\binom{n}{k}
\]

is an even integer for any \(1 \leq k \leq n - 1 \).

- Let \(m \) and \(n \) be integers such that \(1 \leq m \leq n \). Prove that \(m \) divides the number

\[
\sum_{k=0}^{m-1} (-1)^k \binom{n}{k}.
\]

Generating functions

The terms of a sequence \((a_n)_{n \geq 0} \) can be combined into a function

\[
G(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \cdots,
\]

called the generating function of the sequence. For example, the finite sequence \(\binom{m}{n} \), with \(m \) fixed and \(n \) varies, gives the function \((x+1)^m \). The generating function for \(a_n = \frac{1}{n} \) is \(-\ln(1-x) \).

Generating functions provide a method to understand recursive relations of a sequence.

Theorem. Suppose \(a_n \ (n \geq 0) \) is a sequence satisfying a second-order linear recurrence,

\[
a_n + ua_{n-1} + va_{n-2} = 0.
\]

Suppose that the quadratic equation \(\lambda^2 + u\lambda + v = 0 \) has two distinct roots \(r_1, r_2 \). Then

\[
a_n = \alpha r_1^n + \beta r_2^n
\]

for some real numbers \(r_1, r_2 \).
Proof. Let \(G(x) = a_0 + a_1x + a_2x^2 + \cdots \) be the generating function of \(a_n \). The recurrence relation of \(a_n \) implies that

\[
G(x) - a_0 - a_1x + u(G(x) - a_0) + vx^2 G(x) = 0.
\]

Solving for \(G(x) \), we have

\[
G(x) = \frac{a_0 + (ua_0 + a_1)x}{1 + ux + vx^2} = \frac{a_0 + (ua_0 + a_1)x}{(1 - r_1x)(1 - r_2x)}.
\]

Using partial fractions, we have

\[
G(x) = \frac{a_0 + (ua_0 + a_1)x}{(1 - r_1x)(1 - r_2x)} = \frac{\alpha}{1 - r_1x} + \frac{\beta}{1 - r_2x} = \sum_{n=1}^{\infty} (\alpha r_1^n + \beta r_2^n)x^n.
\]

Therefore, \(a_n = \alpha r_1^n + \beta r_2^n \). \(\square \)

1. Prove the identity

\[
\binom{m+n}{k} = \sum_{j=0}^{k} \binom{m}{j} \binom{n}{k-j}.
\]

2. Give two proofs of the identity

\[
\sum_{j=0}^{n} 2^{n-j} \binom{n}{j} \binom{j}{\lfloor j/2 \rfloor} = \binom{2n+1}{n}.
\]

Problems

1. Prove the identity

\[
\sum_{k=1}^{n} k \binom{n}{k}^2 = n \binom{2n-1}{n-1}.
\]

2. Find the general formula for the sequence \((y_n)_{n \geq 0}\) with \(y_0 = 1 \) and \(y_n = ay_{n-1} + b^n \) for \(n \geq 1 \), where \(a \) and \(b \) are two fixed distinct real numbers.

3. Prove that the Fibonacci numbers \(F_n \) satisfy

\[
F_n = \binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \cdots.
\]

4. Consider the triangular \(n \times n \) matrix

\[
A = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 0 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}.
\]

Compute the matrix \(A^k \) for \(k \geq 1 \).

5. Show that the coefficient of \(x^k \) in the expansion of \((1 + x + x^2 + x^3)^n\) is

\[
\sum_{j=0}^{k} \binom{n}{k} \binom{n}{k-2j}.
\]
6. Find
\[\binom{n}{1}^2 + \binom{n}{2}^2 + \binom{n}{3}^2 + \cdots + \binom{n}{n}^2. \]

7. Let \(S_0 \) be a finite set of positive integers. We define finite sets \(S_1, S_2, \ldots \) of positive integers as follows. The integer \(a \) is in \(S_{n+1} \) if and only if exactly one of \(a - 1 \) or \(a \) is in \(S_n \). Show that there are infinitely many integers \(N \) for which
\[S_N = S_0 \cup \{ N + a \mid a \in S_0 \}. \]

8. For a set \(S \) of nonnegative integers, let \(r_S(n) \) denote the number of ordered pairs \((s_1, s_2)\) such that
\[s_1, s_2 \in S, s_1 \neq s_2, \quad \text{and} \quad s_1 + s_2 = n. \]
Is it possible to partition the nonnegative integers into two sets \(A \) and \(B \) in such a way that \(r_A(n) = r_B(n) \) for all \(n \)?

9. For positive integer \(n \), denote by \(S(n) \) the number of choices of the signs “+” or “−” such that \(\pm 1 \pm 2 \pm \cdots \pm n = 0 \). Prove that
\[S(n) = \frac{2^{n-1}}{\pi} \int_0^{2\pi} \cos t \cos 2t \cdots \cos nt \, dt. \]

10. Let \(S_n \) denote the set of all permutations of the numbers \(1, 2, \ldots, n \). For \(\pi \in S_n \), let \(\sigma(\pi) = 1 \) if \(\pi \) is an even permutation and \(\sigma(\pi) = -1 \) if \(\pi \) is an odd permutation. Also, let \(\nu(\pi) \) denote the number of fixed points of \(\pi \). Show that
\[\sum_{\pi \in S_n} \frac{\sigma(\pi)}{\nu(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}. \]