Determining closed form expressions for sequences

Useful concepts:

- Pattern recognition and induction.
- Greatest integer function:

\[\lfloor x \rfloor := \max \{ z \in \mathbb{Z} : z \leq x \} \]

1. Consider the sequence \((a_i)\) given by

\[a_{m+n} + a_{m-n} = \frac{1}{2}(a_{2m} + a_{2n}) \]

where \(m \geq n \geq 0\). Find a formula for \(a_n\) if \(a_1 = 1\).

2. Find a formula for the general term of the sequence

\[1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, \ldots \]

Recursive Sequences

Useful Concept: Characteristic Equation. Let \(x_n = \sum_{i=1}^{k} a_i x_{n-i}\) for some \(k \leq n\). Interpret the equation as the component description of a matrix vector product to find a matrix \(A\) so that \(v_n = A^n v_0\) for some vector \(v_n\) which describes the sequence \(x_n\). The characteristic polynomial of \(A\) is:

\[P(\lambda) = \sum_{i=0}^{k} -a_i \lambda^{k-i} \]

where \(a_0 = -1\).

Let \(\{\lambda_i\}_{i=1}^{t}\) be the roots of \(P\) (the eigenvalues of \(A\)) with multiplicity \(m_i\). Then

\[x_n = \sum_{i=1}^{t} \sum_{j=0}^{m_i-1} c_{ij} \binom{n}{j} \lambda_i^{n-j} \]

for some constants \(c_{ij}\). In the case that \(m_i = 1\) this becomes:

\[x_n = \sum_{i=1}^{k} c_i \lambda_1^n. \]

1. Find the general term of the sequence given by \(x_0 = 3, x_1 = 4\), and

\[(n + 1)(n + 2)x_n = 4(n + 1)(n + 3)x_{n-1} - 4(n + 2)(n + 3)x_{n-2} \]

for \(n \geq 2\).

2. Consider the sequences

\[a_0 = 1, \quad a_{n+1} = \frac{3a_n + \sqrt{5a_n^2 - 4}}{2} \]

\[b_0 = 0, \quad b_{n+1} = a_n - b_n. \]

Prove that \((a_n)^2 = b_{2n+1}\) for all \(n\).
Limits of sequences

Useful concepts:

- Classic analytic definition of limit: For all \(\varepsilon > 0 \) there is an \(N \) so that \(n \geq N \Rightarrow |x_n - L| < \varepsilon \). Consider how this changes for a limit equal to infinity.

- Squeeze theorem: \(a_n \leq b_n \leq c_n, \ a_n \to L, \ c_n \to L \) then \(b_n \to L \). Consider also a version which shows that a limit is infinite.

- Bounded and monotone means convergent.

- Cauchy criterion: Let \(x_n \) be a sequence in a complete metric space (e.g., \(\mathbb{R}^n \)) then \(x_n \) is convergent if and only if for all \(\varepsilon > 0 \) there is \(N \) so that \(n, m \geq N \Rightarrow |x_n - x_m| < \varepsilon \).

- Cesàro-Stolz theorem (discrete analog to L'Hôpital): Let \(x_n \) and \(y_n \) be two real sequences with \(y_n \) positive, increasing, and unbounded. Then
 \[
 \frac{x_{n+1} - x_n}{y_{n+1} - y_n} \to L \Rightarrow \frac{x_n}{y_n} \to L.
 \]

- Nested intervals: Let \(I_k \) be a sequence of closed intervals with \(I_k \supset I_{k+1} \) and diameter of \(I_k \) converging to zero. Then \(\bigcap I_k \) is one point.

1. Let \(x_n \) be a sequence with the property that \(x_n = n^4 \) for all \(n \geq 1 \). Prove that \(x_n \to \infty \).

2. Prove that
 \[n^2 \int_0^{\frac{1}{2}} x^{n+1} \, dx \to \frac{1}{2} \]

3. Let \(a \) be a positive real number and \(x_n \) a sequence with \(x_1 = a \) and
 \[x_{n+1} \geq (n + 2)x_n - \sum_{k=1}^{n-1} kx_k. \]

 Find the limit of \(x_n \).

4. Show that
 \[a_n = \sum_{k=1}^{n} \frac{1}{k} - \ln(n + 1) \]

 is convergent.

5. Let
 \[a_{n+1} = \frac{a_n + b_n}{2}, \quad b_{n+1} = \frac{b_n + c_n}{2}, \quad c_{n+1} = \frac{c_n + a_n}{2} \]

 Assuming given values for \(a_0, b_0, c_0 \) show that all three sequences converge and find their limits.

6. Let \(t \) and \(\varepsilon \) be real numbers with \(|\varepsilon| < 1 \). Then \(x - \varepsilon \sin x = t \) has a unique real solution.

7. Let \(c, x_0 \) be fixed positive real numbers. Then
 \[x_n = \frac{1}{2} \left(x_{n-1} + \frac{c}{x_{n-1}} \right) \to \sqrt{c}. \]

8. Let \(k \) be an integer larger than one. Suppose \(a_0 > 0 \) and define:
 \[a_{n+1} = a_n + \frac{1}{\sqrt[k]{a_n}}. \]

 Evaluate
 \[\lim_{n \to \infty} \frac{a_{n+1}^k}{n}. \]

9. Let \(f : [a, b] \to [a, b] \) be an increasing function. Show that there is \(c \in [a, b] \) so that \(f(c) = c \).