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1 Large deviations for Markov chains

Given by Elnur Emrah in September 2015 Madison

1.1 Large deviation principle

Let (X;):en be i.i.d. random variables defined on a probability space (2, F, P) such that EX; = 0
and VarX; = 1. Let S,, = n~! Z?zl X; and p, denote the distribution of S,, for n € N. For
example, consider X; ~ N(0,1). Then S, ~ N(0,1/n) and

2 +o0

B V2T Joym

P(|S,| = ¢) eV Ry = = Fnto(n),

Similarly for 0 < £ < ', we have
2
P(|S,| € [¢,0]) = e TnHom),

It is natural to ask if X is a general random variable with measure u, what should we put on
the r.h.s. 7 Motivation: for measure u, what is the following I7

P(|S77| € [E,gl]) = 671(5)n+0(n)' (1)

Definition 1.1. We say that p,, satisfies an LDP with a rate function I if I : R — [0, +0]
is lower semicontinuous and, for all Borel sets B < R, we have

log i, (B
— inf I(z) < liminf 108 j1n (B) (lower bound)
zeBO n—+00 n
log i (B
— inf I(z) > limsup log 1in(B) (upper bound).
z€B n—+aw n

Here, B and B denote the interior and the closure of B. Recall that I is lower-semicontinuous if
the sublevel set {I < a} is closed for any o < +00. This condition is equivalent to liminf,_,, I(y) >
I(z) for any x € R.

Remark: it may take a while to understand this form. Here is the equivalent expressions, which
is very useful for me

e~ (nfucn @) mto(m) 5 ) (B) 5 ¢~ (faepo 1) nto(m)

Note: you have to use B in L.h.s, and use B° in Lh.s

The definition of LDP can be given for sequences of measures on arbitrary topological spaces.
I will refer to LDP for measures on Euclidean spaces below.

There are many basic properties of LDP in Prof. Varadhan, which some one can
introduce to us in the future.
The answer to :

1
I(z) = sup { Az — log E*[e** ]} = sup {Aw — ~log EMn [e”]} .
AER AR n

where p is measure of X; and p, is measure of Zl X;.

A useful tool to establish LDP is Gartner-Ellis theorem. We consider the following
setup. Let (Z,,)nen be a sequence of random vectors in R?. Let 1 denote the distribution of Z,.
Consider the log-moment generating function A, ()\) = log E[e* %] for A € R?. We assume that
the following conditions hold:



1. The limit A(A\) = lim, ;o n " A, (nA) € (=00, +00] exists.
2. 0€ DY, where Dy = {A e R*: A()\) < 0}.
3. A is differentiable on DR.

~

. (Steepness condition) For any x € 0Dy, lim R [IVA(N)| = +c0.

XeDY
Theorem 1.1 (Gértner-Ellis theorem). Under assumptions (a)-(d), (un) satisfy an LDP with
convex, good (i.e. sublevel sets are compact) rate function A*, the Legendre-Fenchel transform of
A given by

A*(z) = sup{A-z — A(N)}.
AeRd
This theorem, in fact, a special case of the Gartner-Ellis theorem; see, for example, [4], [12] for

the full theorem and its proof.
Example: Sum of i.i.d. random variables.

1.2 Application to the Markov chains

We now present an application of this theorem to the Markov chains in discrete time with finite
state space. We introduce some notation first. The state space is [N] = {1,...,N}. Let II =
[7(4,7)]ijerny be a stochastic matrix, that is, (i, j) > 0 and };; 7(i, j) = 1 for each i € [N]. Let
PT denote the Markov probability measure with transition matrix IT and initial state at o € [N].
Let Y,, denote the state the chain visits at time n. We have

PTYi=y1,.... Yo =yn) = 7(o,y0)7(y1,92) - - - T (Yn—1,Yn)

for any path (y1,...,yn) in the state space. We assume that II irreducible; this means that for
each (i, 7), there exists m(i,j) € N such that II"(%9) (3, j) > 0.

Our goal is to obtain an LDP for random variables Z,, = n~' 3" | f(V;), where f : [N] — R?
is a given function.

For the computation A, the limiting log-moment generating function, we will utilize the fol-
lowing result. For a vector u, we will write u » 0 if all components of u are positive.

Theorem 1.2 (Perron-Frobenius). Let B = [B(i, j)]; jen) be an irreducible matriz with positive
entries. Then B has a real eigenvalue p (called the Perron-Frobenius eigenvalue) with the following
properties.

(i) |\ < p for any eigenvalue of B.

(i) There exist a left eigenvector u and a right eigenvector v corresponding to p such that u > 0
and v > 0.

(i4i) p has multiplicity 1.

(iv) For all i€ [N] and ¢ » 0, we have
lim 1 —log Z B"(i,j)¢; | = lm log Z B"(i,7)pi | = logp.
n—+0 n =1 n—-+ow n ]

Proof of (iv). Let ¢ = min; ¢;/min; v;, where v is the right eigenvector corresponding to p. We
have

N
ZB”@] g (¢, j)vje = cp™v;



Taking logarithms, dividing through by n and letting n — +o0 yields

n—+o0 N

l1m1nf —log lz B"(i,j)¢ 1 log p.

We similarly obtain that the limsup is bounded by log p. O
Theorem 1.3. For Markov chain, random variables Z,, = n~*> " | f(Y;) satisfy LDP with a rate
function I(x) with

I(z) = sup {A-x —log p(Il5)}
AeR?

where T = [T (i, 7)]; je[n) defined by ma(i,j) = (i, 5)er )
Proof: We now turn to LDP for the Markov chain (Y,,). We have

A”;n)\) L —log E7 lexp (Z A f( ))1

=1

1
I log 2 exp (Z)\ : f(%)) H"T(yiflayi)
_(y1,<-~7yn)€[N]" i i

=%log > ]_[w Yi1,y;)eN W)

(1/1 yeesYn )E[N]™

where yo = 0. We observe that the matrix ITy = [ (4, j)]; je[n] defined by 7 (i, 5) = (i, j)e* 7
has positive entries and is irreducible because it is obtained from such a matrix II by multiplying
each entry with a positive number. Hence,

A ( 1og[2 113 (0, yn 1 — log p(I1,)

Yn=1

as n — +0o0, by the Perron-Frobenius theorem (applied with ¢ = (1,...,1)). Since the Perron-
Frobenius eigenvalue is positive, we have A(\) = log p(IL) € (—o0, +00) for all A € R%. Hence, (a),
(b) hold and (d) is vacuously true. To check differentiability of A, we consider the characteristic
equation
0 =detlzl — )] =2 +an_1(N)zV 1+ ...+ a1 (M) X + ag(N),

where coefficients a; are smooth functions of A. Let F(z,\) denote the function of (z,\) € R+
on the far right-hand side. We have F(A()A),\) = 0 and, because the Perron-Frobenius eigenvalue
has multiplicity 1, 0, F(A(N), A) # 0. Hence, it follows from the the implicit function theorem that
A is a smooth function of .

Then, the conclusion from the Gértner-Ellis theorem is that p,, (the distribution of Z,,) satisfy
an LDP with rate function I(z) = supycge{A - z — log p(IL)}.

O

1.3 Key words:

1. Large deviation principle.
. rate function

. Gartner-Ellis theorem

2

3

4. Perron-Frobenius theorem
5. Legendre-Fenchel transform
6

. LDP of Markov chain



1.4 Exercise:

Exercise 1. Let ju, be probability measures on R and I : R — [0, +] be a function (not
necessarily lower semicontinuous). Define I(z) = min{/(x),liminf, ,, I(y)} for z € R.

(a) Show that I: is lower semicontinuous. (Hence, the assumption of lower semicontinuity is not
restrictive. I is called the lower semicontinuous regularization of ).

(b) Suppose that the lower and the upper bounds above hold for all Borel sets B < R. Show that
these bounds still hold if I is replaced with I, that is,

~ I n(B
~inf T(x) < liminf 128(B)
xeBO n—-+0o0 n

- 1 B
— inf I(z) = limsup M.

reB n—+00 n

for all Borel sets B = R. Moreover, I is the unique lower semicontinuous function with range
[0, 4+00] that satisfy these bounds. (Hence, the rate function, if exists, is unique.)

Exercise 2. Let M;([N]) denote the set of probability measures on the set [N] = {1,..., N}.
We can identify each p € My ([N]) with the vector (u;, ..., un), where p; = p({j}) for j € [N].
The relative entropy of ¢ € My ([N]) with respect to p € M1([N]) is defined as

q
H(q|u) Zq;10g< J)

where we interpret 0log 0 and 0log(0/0) as 0. Suppose that g; > 0 for all j € [N]. Show that

H(qlu) =  sup 4 10g< )
uEM1 EN ); /
Ui >



2 Talagrand’s Inequalities

Given by Dae Han Kang in September 2015 Madison

2.1 Concentration inequalities

In this talk, we give powerful concentration inequalities of Talagrand for product probability
measures. This talk is primarily based on an article by Nicholas Cook [3].

Theorem 2.1. Let 2= x -+ xQp and P = pg x -+ X pi, @ product probability measure on ).
Then for all nonempty measurable subsets A < Q,

L 1o @A/ g B(g) < 1/P(A) @)

where do(xz, A) is the convex distance (TBD) from x to A. As a consequence, by Chebyshev’s
inequality we have

PO < o 3)

where Ay = {x € Q : deo(z, A) < t}.

One of the most useful corollary of Talagrand’s inequality is the following concentration in-
equality for convex Lipschitz functions.

Corollary 2.2. Let X = (X1, Xos,...,X,) be a random variable with independent components
taking values in [c,c + R] (ce R,R > 0). Let F : R" — R be a convex L-Lipschitz function with
respect to Uy norm. Let MF(X) be a median for F(X). Then for allt >0

P(|F(X) — MF(X)| > t) < de~"/UR*L?) (4)
Note: Convex is very important here.

2.2 Idea of proof

We must define the convex distance. To motivate the definition and to understand Talagrand’s
inequality, first we consider the classical bounded difference inequality. A function f : X" — R

has the bounded differences property if for some nonnegative constants cy, ..., cn,
/ .
sup |f(z1, ... xn) — f(T1, ., Tim1, T} Tig1, - -, Tn)| <, 1 <P <
L1y:.3Tm
TieX

Theorem 2.3 (Bounded differences inequality). Assume that the function f satisfies the bounded
differences assumption with constants cy,...,c, and denote v = %Z?:l cf. Let X = (X4,...,X5)
where X; are independent random variables taking values in X. Then

P(f(X)—Ef(X)>t) <e t/@),

For the proof, see Theorem 6.2 in [2]. For any a € R, the weighted Hamming distance
do(z,y) between the vectors z,y € Q1 x -+ x Q,, is defined as

da(ﬂf,y) = Z Oéi]-{a:i;ﬁyi}'
i=1

With this definition Theorem implies that if f: Qq x --- x €, — R is Lipschitz with respect
to d,, then
2 2
P(f(X) = Ef(X) >t) < e 2/llel



where ||a| is the euclidean norm of «.
On the other hand, if instead of "bounded differences property’, if we apply Theorem [2.3] for a
convex Lipschitz function with respect to 2 norm as in Corollary we have

P(f(X) - Ef(X) > t) < e 20"/ L%
The power of Talagrand’s inequality is the dimension free subgaussian inequality.

Motivation for the definition of the convex distance
Now we give a motivation for the definition of the convex distance. Since the function f(z) =
do(x, A) is Lipschitz with respect to dg, by the bounded differences inequality

P(Edo(X, A) — da(X, A) > 1) < e=2 /oI,

However, by taking ¢ = Ed, (X, A), the left-hand side becomes P(d, (X, A) < 0) = P(A), so the
above inequality implies
[l 1

5 logip(A).

Edy (X, A) <

Then, by using the bounded differences inequality again, we obtain

2 1
P(do(X,A) =t + [l log ) < e2t/ el

2 P(A)
Thus, for example, for all vectors o with unit norm ||| = 1,
P(do(X,A)=t+4/=10 ! )<672t2
[e% ’ = g P(A) =

Thus, denoting u = , /%log ﬁ, for any t > u,

P(do (X, A) > t) < e 2077,

On the other hand, if t < 4/—2log P(A), then P(A) < e~*/2. On the other hand, since (t—u)? >
t2/4 for t = 2u, for any t > ,/2log % the inequality above implies P(d,(X,A) = t) < e—t/2,
Thus, for all ¢ > 0, we have

sup P(A) - P(do(X,A)=¢) < sup min(P(A), P(do(X,A) =1)) < 2

a:l|a||l=1 a:lal|=1

The main message of Talagrand’s inequality is that the above inequality remains true even if the
supremum is taken within the probability. (See )

Convex distance

The convex distance of x from the set A is defined by

dc (.13, A) = Sup do (.13, A)

a€[0,00)":||a||=1

There is an equivalent definition of the convex distance that is used for the proof. Let €2 as in the
theorem, and let A € Q, z € Q. We define Ua(z) < {0, 1}"

Ua(z) = {s€{0,1}" : Iy € A with y; = x; whenever s; = 0}.

Now let V4 (z) € R" be the convex hull of Uy (z) in R™. If  is a vector space we say that a vector
s=(81,...,8,) in the binary cube supports a vector z € Q if z; # 0 only when s; = 1, and define



Ua(x) to be the set of vectors in the binary cube that support some element of A —z. We claim
that de(z, A) = dg(0,Va(z)) where dg is the euclidean distance in R"™ (Exercise).

Proof of the Corollary[2.3: We only consider the case R = 1, ¢ = 0, and L = 1. Key in the
passage from the theorem to the corollary is the observation that for the special case of A convex
in [0,1]™, the convex distance controls the Euclidean distance.

Lemma 2.4. Let A convex in [0,1]"™ and x € [0,1]". Then dg(x, A) < dc(x, A).

Proof. Suppose dco(x, A) < t. Then by the equivalent definition of convex distance, there exists
a convex combination w = ", ;i of vectors 5; € Ua(x) 1 < i < m such that ||w|| < t. Now
for each i, $; € Ua(x) means there exists Z; € A — x supported by $;. Let z = Z:’;l AiZz;. Then
z € A — x by convexity. Note that ||z|| < ||w| (Exercise). Thus dg(x, A) < ||z|| < ¢, and the claim
follows.

O

Now we return to prove corollary [2:2] Note that the lemma and the theorem imply

1
E dp(X,A)?/4 <
¢ P(X € A)

for any convex subset A of [0,1]™. Let a > 0 and take A = {F < a}. By the Lipschitz property,
if X € {F > a+t} for some t > 0, then dg(X, A) > ¢. Then by applying Chebyshev’s inequality
to the LHS, we have
P(F(X) = a+t)et /* <1/P(F(X) < a).

Now taking a = M F(X) we get the upper tail estimate

P(F(X)— MF(X)>1t) <2 /4
and taking a = M F(X) —t we get the lower tail estimate

P(F(X)— MF(X) < —t) <2e /4

where the definition of median has given us the prefactors 2.
O
Proof of the main Theorem : We only sketch the proof. For the details see [3]. One can
prove the theorem by induction on n. For the case n = 1, we must show

/41— P(A)) + P(A) < 1/P(A)
which follows easily from e/*(1 —u) +u < 1/u for all u € [0, 1]. For the inductive step we need a
lemma.

Lemma 2.5. For all u in (0,1] we have

inf e(=2?/4y =2 <2-—u.
Ael0,1]
Assume the result holds for n. Let Q' = Qy x -+ x ,, a product space with product measure
P, and let 9,1 be another probability space with measure p, 1. Let Q@ = Q' x Q,, 1. Let A < Q
and x € Q. The proof of the result for n + 1 follows these steps:

1. Obtain an inequality for d¢(z, A) from consideration of “slices” and the “projections” of
A in €, and convexity. For a point z €  we write z = (2/,w), 2/ € ', w € Q,41. Let
A(w) = {z' € Q' : (¢/,w) € A} be the w-slice of A, and B = Uyeq, ., A(w) be the projection
of A to Q. The key observation that gets the proof is that we can bound the convex distance
de(z, A) in terms of the distances to the sections A(w) and the projection B.

2. Apply Holder’s inequality and the induction hypothesis.

3. Optimize using the lemma.

4. Use Fubini.



2.3 Applications

Example 1. The largest eigenvalue

Let M be an n x n Hermitian matrix Then the largest eigenvalue A1(M) = ||M]||,p. Considering
the operator nomr of M as a function of the n? components of the entries, we see that it is a
convex and 1-Lipschitz function from R™ with euclidean distance to R, (Exercise). Hence, if X
is a random Hermitian matrix-where the diagonal entries and the real and imaginary parts of the
strict upper-triangle entries are independent bounded scalar random variables, and we identify the
space of Hermitian matrices with R"z, then by Talagrand’s inequality we have that the random
variable A1 (X) is concentrated around its mean with sub-Gaussian tails independent of n.

Example 2. The longest increasing subsequence
Let X = (z1,...,y) be uniformly distributed in 2 = [0,1]", J(z) be the longest increasing sub-
sequence of (z1,...,zy), and let Fy,(x) = |J(x)| be its length. We will show that F), concentrates
tightly around its median M F,.

Note that we cannot apply Corollary as F, is not convex. For example, with n = 3,
taking z = (0,1,0.6) and y = (0.8,0.0,6) we have that F3(z) = 2 = Fj3(y), but F3(*f) =
F3((0.4,0.5,0.6)) = 3. However, F, is 1-Lipschitz with respect to the Hamming metric. While
the full convex distance is not so easy to apply directly as euclidean distance, we will see that a
weight function suggests itself. Let @ > 0 and A = {F(y) < a}. For any z, y € Q,

Fn<y) = Fn(m) - Z 1{z7¢eJ(x),mHéy7;}~
i=1

If we let a(z) = mlj(m) = \/ﬁlﬂm) we have
1 n 1
d = — 1y eronlip 91 = ———(F,(x) — F, .
a(z)(z,y) \/m 1221 {wied(x)} Hai#y:} Fn(x)( (z) ()
For the convex distance from x to A we have

F.(x)—a
dc(l‘,A) 2 T(I)

which is the key step of applying Talagrand inequality in this example. For ¢ > a the function
g(t) = (t — a)/+/t is monotone increasing. From this and Theorem it follows that

F.(z)—a J ¢

P(Fp(xz) > a+t) < P( P Ca+i

)

t 1 2
< P d A > — )< —— —t /4(a+t).
(olr )= 7)< By

Taking a = M,, := MF,(z) we get the upper tail estimate

2
P(Fp(x) = M, +1t) <2 -
(Fule) 2 Mo+ ) < 2exp(~ )
and taking a = M, —t we get the lower tail estimate
2

P(Fy(r) < My —t) < 2exp(f4M ).

It can be shown that M, = O(4/n), so the above concentration estimates are enough to prove
(Fn(z) — My,)/+/n — 0 as..



2.4 Key words:

1. Concentration inequality
2. Talagrand’s inequality
3. Convex distance

4. Convex and Lipschitz function

2.5 Exercise:

1. Prove that de(z, A) = dg(0,Va(z)) as claimed.
2. Complete the proof of Lemma [2.4

3. Prove that A\;(M) in Example 1 is a convex and 1-Lipschitz function on R™ .

10



3 Concentration of Measure and Concentration Inequalities

Talks given by Jessica Lin October 2015 in Madison, WI

The purpose of these lectures is to discuss some examples of classical concentration inequalities
used in probability theory, as well as to clarify the connection between probabilistic concentration
inequalities and the analytic subject of concentration of measure.

The typical setting of concentration inequalities is to consider Xi, X5, ..., X, independent
random variables, and f : R™ — R a measurable function. We let Z = f(X1, Xo,...,X,,) and we
aim to identify a function g : R — R, with limy_,0 g(\) = 0 such that

P[|1Z - EZ| = X] < g(\).
The main things to consider will be:
e What hypotheses do we need to assume about f7

e What type of function is g7

As an introductory example, the classical Chebyshev inequality yields that for f measurable,

Var|Z
PlZ - B2 > N <B[(z - B2 > 2] < Y22

This is an example of one of the most elementary concentration inequalities, and so long as we
can get control on the Var[Z], then we have some type of concentration phenomena. The goal of
these lectures is to see

e How can we control Var Z7?

e Can we get control of higher moments?

3.1 Concentration of Measure, Poincare Inequalities and the Efron-
Stein Inequality

We begin by describing an analogous formulation of concentration inequalities, which is the subject
of concentration of measure.

Definition 3.1. Let (X, u,d) denote a metric probability space. We say that p satisfies concen-
tration of measure with concentration rate g : R — R such that for all A € X with u(A) > %, we
have that for

H(AS) < gr), A= fwe X d(w, A) <1},

This looks very similar to one of the formulations of the Talagrand inequality we saw:

2

pA)p(AT) < e

By a simple rearrangement, this implies that

where we used that p(A4) > 1.
We now state what is meant by a Poincare inequality, which we will see plays an important

role in obtaining concentration phenomena:

11



Definition 3.2. Consider a metric probability space (X, p,d). The measure u is said to satisfy a
Poincare inequality with constant C' if

Var[f]gCJ IVfI? dp forall f:X —>R. (5)
X
The notion of Vf is interpreted in the distributional sense, and thus the inequality makes sense

for all functions f e H'.

An interpretation of a Poincare inequality is to say that given a value for variance, there is a
smoothest function which has that variance (since any other function will have a larger L?-norm
of the gradient). We next show that indeed, having a Poincare inequality is a sufficient condition
to have concentration of measure:

Theorem 3.1 ([I], Theorem 2, p. 15). Suppose (u, X, d) satisfies a Poincare inequality, and p is
absolutely continuous with respect to the volume element. If u(A) = %, then for all r > 0,

p(AS) < €75V,

Proof. Let A, B denote two subsets of X such that d(A, B) = ¢, for € to be chosen. (We should
think of B = A¢). Let a := u(A), and b = u(B). We then define

% re A
flx) = %— % (% + %) min {e,d(z, A)} z€ X\(Au B)
_% reB

Note that f belongs to H'. Thus, we are able to apply the Poincare inequality. We have that

since f is constant on A U B,
Vfi(x)=0 forxze Au B.

Otherwise, we have that p-almost surely,

Vf(@) < % <1 + 2) .

a

Therefore, we have that
1\ 2
J|Vf(x)|2du < giz (le + b) (1—a-—0b).
Moreover, we consider that if f = { f du, then
varlf] = (7 - 7 du
> — f)d —f)?d
> r-pran | -
2 2
>a<1—f_> +b(—1—f> :
a b

The right hand side is minimized when f = 0, which implies in particular that

1 1
Vi > — + —.
ar(f] a+ ;

By the Poincare inequality, we have then that

1 1 C /1 1\°
7<7 — — . — .
-ty €2<a+b> (1—a—0)

12



Rearranging this inequality, we have that
b < 1;0'
1+¢e2/(20)
Now, we let B = A¢ and % =1, or e = v2C. Recall a := p(A), and b = u(B). Thus,

H(AD) < p(A%) 2.

Notice that
(A)e ={z:d(z,As) <e} S {z:d(z,A) < 2¢}

which implies that
p(As.) < p((A2)).
Therefore, by iterating, this implies that
— /L(Akg) < 2kl

Thus, for any r > 0, let k such that ke < r < (k+1)e. Since u(AS) is monotonically non-increasing
in r, we have that by the choice of ¢,

1
1—u(A) <271 <exp (—\j%r)

Since hzf2 > %, we get that

1— pu(A4,) <exp (— 3\%) .
O

Thus, we see that the property of having a Poincare inequality leads to concentration of
measure.
In the context of probability theory, we now would like to ask:

1. What does a Poincare inequality look like in the setting of random variables?
2. When does a Poincare inequality hold?
The main statement which encodes these two results is the Efron-Stein inequality:

Theorem 3.2 (Efron-Stein Inequality). Let f be measurable, and {X;};_, independent random
variables. Let Z = f(X1,Xo,...,X,). Then

n

Var[Z ; [(Z —E; 2)?] (6)

where
E; Z:=E[Z| X1, Xo, ..., Xi1, Xig1, ... Xn ]

n

Equivalently, if we let {f(l} denote an independent copy of random variables, then by defining
i=1

Zi = f(X1, X2, Xic1, Xiy Xig1, -+, Xn),

we have that

1 n
Var[Z 5; [(Z - Z) (7)

13



This theorem tells us that so long as we are studying a measurable function of independent ran-
dom variables, this is enough to guarantee a Poincare inequality. Instead of proving the statement,
we will discuss why @ is equivalent to : Consider that, in general, if XY are independent
identically distributed random variables, then

E[(X —Y)?] = E[X? — 2XY +Y?]
= 2E[X?] - 2(E[X])?
which implies that
1
Var[X] = 3 E[(X —Y)?].
Thus, by definition of Z;, Z; is iid with Z. This implies that

1
Ei[(Z -E; Z2)*] = 3 Ei [(Z - 2)?].
Taking expectation of both sides, we have that
1
E[(Z -E; 2)*] = SElZ - Z)?],

so by @,

WﬂﬂgigﬁﬂZ—%ﬂ,

which is .
Notice that truly looks like a Poincare inequality since

Z—-7Z; ~Vx,Z
since it measures the changes in Z with respect to changes in Xj.

Remark 3.3. We point out that equality in is achieved in the case when Z =" | X;. This
implies that sums of random variables are the least concentrated of all measurable functions of
(X1, Xo,...,X,).

Remark 3.4. The primary purpose of the Efron-Stein inequality is to provide a way of com-
puting Var[Z]. In most applications, we will couple the Efron-Stein inequality with Chebyshev’s
inequality. However, we can take this further by not just considering f which is given, but we can
apply Efron-Stein to any monotone function h(f) to compute the variance. This is why one is
able to obtain something with exponential decay, but not Gaussian. For reference, we also state
the “concentration version” with exponential bounds, which we refer to as the Gromov-Milman
Theorem:

Theorem 3.5 (Gromov-Milman, [I0], p.34). Let (X, u,d) denote a metric probability space, and
suppose it satisfies a Poincare inequality with constant C'. Let f be a 1-Lipschitz function. Then
for every t >0,

P[|f —E f| > ] < 240e~ V2",

Next, we provide some examples of interesting applications of the Efron-Stein inequality in the
context of probability:

Example: Bounded Differences. The Efron-Stein will prove to be particularly useful in the
context of random variables which have bounded differences. Let f be measurable, and {X;};_,
independent random variables. Let Z := f(X;, Xo,...,X,,), and suppose f has the property that
for each i, there exists ¢; so that

f(X17X2a"'7Xi7"'7X7L)7f((X17X2a"'7Xi7"'aXn) <G
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Then by the Efron-Stein inequality, we have

Var[Z] <

n
2
e
=1

Checking the property of bounded differences is usually quite straightforward, and thus the Efron-
Stein inequality an easy way of obtaining concentration from this. We next show an application
to bin-packing:

N | =

Suppose {X1,X2,...,Xn} € [0,1] are independent random variables. What is the minimal
number of bins into which {X;} can be packed such that the sum of X; in each bin does not exceed
1?7

Let

Z = f(X1,...,X,) = minimum number of bins to pack satisfying the rule above.
Notice that if we adjust any X,
If(X1,. 0 Xs, ) — f(X1, o X, )] < 1L

Thus, this choice of f satisfies bounded differences, which implies by the Efron-Stein inequality

that
n

Var[Z] < —.
ar[Z] 5

Therefore, with Chebyshev’s inequality, we have that

1t+e

P1Z-EZ|>n'F| <on.

3.2 Logarithmic-Sobolev Inequalities

We next consider the following. The Efron-Stein gives us excellent control over the concentration,
with estimates that are even exponential in nature. However, how can we obtain Gaussian bounds?
It turns out to obtain Gaussian bounds, we need something which is stronger than a Poincare
inequality. The right tool we need is a Log-Sobolev inequality (LSI):

Definition 3.3. Let (X, p,d) denote a metric probability space. p satisfies a LSI with constant
C if

Jfg log f* dy — sz log (fodu) dp < ZC‘JIVJ‘I2 dp
E[f*log f*] - E[f*log E[f*]] < 2CE[|Vf]’]

For specialists in the field, the left-hand side can be identified as the entropy of the function
f- This property is referred to as a Log-Sobolev inequality in light of its connection with classical
Sobolev inequalities:

Consider that the classical Sobolev inequality states that WP (R?) < LP*(R?) for

1 1

px P

IS

Thus, we see integrability of |V f| implies higher integrability of the function itself, depending on
the dimension. The LSI can be seen as a similar estimate which does not depend on dimension!
This is why it is referred to as the LSI, since it gives us similar improvement of integrability with
logarithmic weights.

Next, we show that a Log-Sobolev inequality is indeed stronger than a Poincare inequality:

15



Proposition 3.6 ([I], Proposition 3, p.28). Let (X, p,d) denote a metric probability space. If u
satisfies LSI with constant C, then u satisfies a Poincare inequality with constant C.

Proof. The proof follows by a clever, yet standard trick in Taylor expansion. We study the Taylor
expansion of the LSI applied to 1 + ¢f, where f is any bounded function with 0 mean.
On the right-hand side of LSI, we have that

[ Iwasent =z [1vif an
Next, we investigate the asymptotics of the left-hand side. We consider that

E[(1+¢cf)?log((1+ef)?)] =2E[(1 +¢cf)*log(l+¢ef)].
Next, we recall that according to the Taylor expansion of log(1 + z),

22 12
log(l1+¢ef)=c¢f — 5 + o(e?).

Thus,

E[(1+ ef)?log((1 + ef)Q)] =2F [(1 +ef)? (sf — 62f2>] + o(£?)
= 2 E[f] + 4e*E[f*] — > E[f*] + o(¢?)
= 32 E[f*] + o(e?)

where in the last line, we used that f has mean 0. Next, we check the second term,

B[(1 + /) log B[(1 + £)?] = (1 + 7 E[f?] log(1 + B[]
= (L+ 2 E[f*]) (e E[f?]) + o(e?)
= 2E[f?] + o(£?).

Therefore, combining these, we have that according to the LSI,

2e? E[f?] + o(e?) < 2C&? f IVFI? du

which implies that
var(f] <€ [ V41 dn

which is indeed the Poincare inequality. Moreover, the inequality is unchanged by adding constants
to f, and for any smooth f with compact support. By density, this implies that it holds for any
f e H'(R?) as desired.

O

Finally, we show that (X, pu,d) satisfying LSI implies that we have Gaussian concentration
bounds:

Theorem 3.7 (Herbst). [[I0], p. 85, Theorem 21] Let (X, i, d) denote a metric probability space,
satisfying a Log-Sobolev inequality. Then for every f : X — R Lipschitz with constant 1, for every
AeR,

E[MUELD] < (CX°/4

and )
Plf —Ef|>t] <2 t/¢

16



Proof. Let A > 0. The case A < 0 can be proved similarly. We apply the LSI to the function e*//2.
This implies that

fe/\f)\f dp — je’\f log (J e)‘fdu> du = MfE[eM] — E[eM log(E[eM])
< C’J’Ve”/z‘z du
< %JAQ\W\%V dp
< %)\QE[eV]

using that f is 1-Lipschitz.
Next, we define h(\) := E[e*], so that h'(\) = E[fe]. We may rewrite the above inequality

as
MR (X) — h(X\) log h(\) < %AQh(A) (8)
so that ,
<i\10gh()\)> < %
Also, we have that
log(h(N) _ o BleM]
fm 2T = 0RO = fm, 7 = 1)

Combining these two pieces of information, we have

log h(Y) < B[] + 52

Thus,

and this implies that
E[e?U-ED] < 5N
Notice that the same argument holds for A < 0, since we multiply/divide by A twice.
Finally, by Markhov’s inequality, we have that

E[er—EN)

2
e <270>\_

e

Pllf —Ef|= AN <P[f-Ef=2A+P[f-Ef >-)] <2

(&

Next, as before, we state the probabilitistic version of the LSI:

Proposition 3.8. Let Z = f(X1, Xo, ..., X,), where {X;}!"_| are independent, and f is measur-
able. Then we have for every s € R,

n
sE[Ze*?] — E[e*?]log E[e*7] Z s(Z - Z)] (9)
where Pp(x) =e* —x — 1 and Z! := f(Xy,..., X},... Xp).
FEquivalently, we have that
n
sE[Ze"”] — E[e*?|logE[e*”] < S°E | Y [(Z — Z))*e*”? 72} (10)
i=1

17



Next we discuss some applications and examples:

Bounded Differences. Again, we study the situation where we have bounded differences:

By , we have
sE[Ze*?] — E[e*?]log E[e*?] < 52 Z 2 E[e*?].

i=1
Notice it has the same form of . Then with similar proof as the one for the Herbst Theorem,

we have e
P[|Z -EZ|>t]<e t/Xmc (11)

Finally, we provide an application to Random Matrices, found in [7] . Let A;; denote a
symmetric, real matrix with entries X;; for 1 < 9 < j < n, which are independent random
variables, and suppose that | X; ;| < 1.

Let Z = X1 denote the largest eigenvalue of A;;. We check to see if Z satisfies the bounded
differences property. We have that

A = vl Av = sup uT Au.
fluf=1

Let A} ; denote the matrix A; ; but replacing X; ; by an independent copy, called X; ;. Then we
have that

|Z — Zz{,j| < |UT(Aij - Agj)v|
< (vivy(Xij — X7 ;)
< 2fvivy],

using that |X; ;| < 1. Therefore, we have that
DM (Z-Ziy)P <4 D) P <4 Y0} | =4
1<i<j<n 1<i<j<n i=1
Therefore, by , we have that

P[|Z — EZ| > t] < e */16

3.3 Key Words:
1. Concentration of Measure
2. Poincare Inequality
Efron-Stein inequality

Bounded Differences

AN R

Log-Sobolev Inequality

3.4 Exercises

Exercise 1: Let X1, X5,..., X, and Y7, Y5,...,Y, be two sequences of coin flips. Show that with
large probability (larger than 1/2), the length of the longest common sequence is within O(y/n)
of the mean.

Exercise 2: Show that @ implies (10))
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4 Comparison methods and applications.

Talks given by HaoKai Xi, November 2015 in Madison, WI

Let {Xi,...,X,,...} be a sequence of random variables. For each n = 1,2,... let F,, be a
function of n variables. If F, (X7, ..., X,,) has a limiting distribution, how to find it? Assume there
is another sequence of variables {Y7,...,Y,,,...}, Y}, is “close” to X,, for each n, and we know the
limiting distribution of F,(Y7,...,Y,). Then we might verify that F,,(Xi,...,X,,) has the same
limiting distribution by showing that E g (F, (X1, ..., X)) — Eg (F,.(Y1, ..., Y,,)) converges to 0 for
all bounded continuous function g through a interpolation or some replacement trick. In this
paper, I will focus on three methods:

1. Lindeberg replacement trick;
2. Comparison through X3 = /sX} + /1 — sX0, where X = X,,, X} =Y,,.

3. Comparison through X3 = X3X! + (1 — X$)X? where X; is a Bernoulli random variable
with P(XF =1) =sand P(X; =0)=1—s.

4.1 Lindeberg replacement trick

The main idea is replacing X with Y} iteratively for k = 1,2,....,n in F,(X1,...,X,) so it will
become F,(Y1,...,Y,,) and also produces some error in distribution. Next we illustrate how to use
this method to prove the Central Limit Theorem. It suffices to show the following version

Theorem 4.1 (Central Limit Theorem). Assume Xi,...,X,,... is a sequence of bounded i.i.d.
random variables with E X; = 0 and IEXl2 =1, then we have

X1+ -+ X,
A/n
Proof. Let Y1,...,Y,, ... be a sequence of i.i.d. Gaussian random variables with mean 0 and variance
1 that are independent of X1, ..., X,,,.... For X = X7, Y;j or 0, denote

ZinX)=(Y14+ - +Yi 1+ X+ Xip1 4+ + Xp)/V/n

4, N(0,1)

where 1 < i < mand n = 1,2,... Clearly we have Z,, ,(Y3,) 4 N(0,1) for all n. Therefore it

suffices to show that for any g € C3(R) with bounded derivatives up to 3rd order,
E[g(Znn(Yn)) — 9(Z1,n(X1))] — 0
Actually

Elg(Zin(Yi)) — 9(Zin(Xi))] (12)

IE

E[Q(Zn,n(yn)) - Q(Zl,n(Xl))] =

=1

By Taylor expansion, we have

~ Bg(Zin(0) + 7= B/ (Zin(0)X + 5B (Zin(0)X* +

where X is between 0 and X. Notice that Z; 5 (0) is independent of X; and Y;, and X; and Y;
have the same first and second moment, hence we have

677/3/2 Eg”/(Zi,n(X))XS (13)

E[g(Zin(Y:)) — 9(Zin(X:))]| < Cn™%2 (14)
where C' = E X3 - sup ¢” (z). Thus
zeR
|E[g(Zn.n(Yn)) — 9(Z1.0(X1))]] < Cn™/2 (15)
Let n — oo and we are done. O
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4.2 X*=,/sX'++/1-5X" type interpolation
We use this interpolation to prove Theorem

Proof. Denote

O Xj XS

= —\/ﬁ

where X7 = /sX} ++4/1—sX} for all k and s € [0, 1]. For any g € C*(R) with bounded derivatives
up to 3rd order, we want to show that

Zn

Elg(Z)) — 9(Z3)] — 0.

n

By foundamental theorem of calculus, it suffices to show that

sup E M = O(n_1/2)

0<s<1 ds
Actually,
dg(Z2) ) L 078 dX§
E n :]E ZS n 1
ds g ”)1;:1 0X; ds
1L oy 12 y1 ~1/2v0
=%;E9(Z5)(3 X; —(1-3) X;) (16)

For each 1 < i < n, denote z:® = Zs — X?#/y/n, we have

L gmzsw)(xp)2 (17)

s s(e 1 s(2 s

N

for some Z°® between Z$% and 750 Now plug into , since ZV% is independent of X}
and X}, X? and X! have vanishing first moment and the same second moment, we get

n

1 " 3 _ —1/2
SZIW,/Qigglg (@) - |EXu|* = Cn™ V2,

dg(Z,)
ds

e

O

Next let’s look at an example from random matrix, which I find in [?]. Denote by X,, an n x n
Wigner matrix, in which the upper triangular entries (X,,);;,% < j are real random variables with
mean 0 and variance 1/n and the diagonal entries (X,,);; are real random variables with mean
0 and variance 2/n. Denote by Y, an n x n GOE, in which the upper triangular entries has
distribution A(0,1/n) and the diagonal entries has distribution A/(0,2/n). Assume we have that
the asymptotic eigenvalue density of GOE is the semi-circular law, we show by a interpolation
trick that the asymptotic eigenvalue density of Wigner matrices is also the semi-circular law.

Lemma 4.2. Let {X,} be the Wigner matrices that satisfy E(v/n(Xy)i;)? < Cp for all n,p,i,j
where Cy, is independent of n,i,j. Let Y, be GOE, then for any z with Imz > 0

E (iTrG(Xn, z)> ~-E (iTTG(Yn, z)) — 0.

where G(X, z) = (X — 2)71, the resolvent of X.
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Convention of notations: In the rest of the paper I ignore the parameter n for matrices, so
without mentlomng specifically, all matrices are n by n.
Denote by X (S ) the matrix that satisfies

X3, if 04065 = 0 and 405 = 0
(X;i’j))ab =< A if Gi0p; = 1
A if 0o 6 = 1

Denote by A?ij) the matrix that satisfies
0 if 6ai6bj =0 and 5,1]‘(5171' =0

(A%))ab = X5 if iy = 1
X5 if G 0 = 1

Also,
G® :=G(X? 2),
s)\ . S,
G : G(X(lj 2)

Proof. 1t is easy to check that if X is Hermitian then |G(X,2)| < L.
We choose the interpolation X* = /sX! + /1 — sX° with X° = X and X! =Y. We have

CE L 106r — - DETH(G) (VX - (1 5)XO)(@) (18)

Expanding G* at X7; we get
G* = Gli) = GlapAlip) Glig) + G Blip Glan Al Cla) (19)
Plug into and multiply out s/2X! we get

ETr(G*)(sT2X")(G*) =sPETr(G*)( Y. Al;)(G?)

1<i<ji<n
= ) {Tr2EG];) B, + O )}
1<i<j<n
— =2 3 {EG) Bl + (1= 0 E(GT)3 E(AL)D) + O™ |
1<i<j<n

We get the same ﬁrst two terms in the result of the computation of ET7(G*)((1 —s)"/2X%)(G*).
Therefore in these terms cancel out and it remains O(n~1/?). O

4.3 X*=X°X'+ (1 - X% X" type interpolation

This method is first developed in [6].

Just like the previous methods, we start with computing 0; E F'(X*) for some function

F :R"™ — C. The advantage of such interpolation is that this derivative is very clean, as shown in
the following lemma.

Lemma 4.3. For F : R" — C we have

EF(X*)= > EF(X EF(X(l) !

1<igsn

provided all the expectations exist. X(sl)’\ 1s X° with the ith component replaced with .
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Proof. Let pi be the distribution of X so we have

dpg = sdp; + (1 — s)dus.
()
For simplicity of notations, H means []  and ), means ), in the equations below.
1<k<n,k#i k 1<k<n

O, EF(X J X) | [ dus
k
(1)
-3 j 00 [sF (X0 + (1= )P (X)at] | Lo
=ZJ du,ﬂduk JF duz]_[duk

=ZIEF(X(SZ.’)Xi ) —EF(X[" N

Exercise: Prove the CLT using this interpolation.

We can exploit d; E F(X?) further. Consider the following question, suppose we know that
E F(X?) < ¥ for some small ¥, and we want to show that E F(X!) < c¢¥ for some constant c.
We can use Gronwall’s inequality, with which it suffices to show

0, EF(X®) < U +EF(X*).

This requires us to have a self-consistent estimate for d; E F/(X*®), i.e. we want to write it in term
of X?%.

Lemma 4.4. Assume F is analytic and X* has finite moments for all s,

EF(X*) =Y Y Ki,E <8XS>kF(XS)

k=1 1

where KJ. ; is the coefficient of the kth order term of the formal power series of

1 1
EetXi — EetXo

E etX:
Proof. We fix i and abbreviate f(z) := F(Xa)x) €= X?, ¢ = X0, ¢ := X}. By Taylor
expansion,
E £(¢) + 2 EfPO)ECH/E (20)
k>1
We use

Ef9(0) =EfO©) - D EfFHR0)EL /!

k=1
repeatedly on to get

E(f(O-f0) = Y,(-1)* 3, EfEht QB R[E /R = Y Kn(GOEF™M(E

q=0 k,k1,..., kq=1 j=1 m=1
where
1 /d\™ Ee¢—-1
K, = —1)4 E¢F/k! | |Eehi k!l = — | = - -
€O=2n" 3 B || ¢/ (dt) TR

q=0 kk1,....kg=m Jj=

Now by Lemma summing over ¢ we get the desired result.
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4.4 Key words
e Comparison method
e Lindeberg replacement trick
e Interpolation

e Gronwall’s inequality

4.5 Exercise

Prove the CLT using the second interpolation method. (The 3rd method in this talk.).
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5 An introduction to initial enlargement of filtration.

Talks given by Christoper Janjigian, November-December 2015 in Madison, WI

These incomplete notes are a work in progress. They are intended for a two-part talk in the
graduate probability seminar at the University of Wisconsin - Madison. The goal is to introduce
listeners to the techniques of initial enlargement of filtration and the Doob h transform, which
offer perspectives on what it means to condition a stochastic process on a potentially measure zero
event. We will be particularly interested in cases when this conditioning preserves some regularity
property, such as being a semi-martingale, being a diffusion, or being Markov. The first part of
this talk is a reworked and corrected version of a talk that I gave in this seminar three years ago.

5.1 Introduction - discrete random walk bridge and Brownian bridges
5.1.1 Discrete random walk bridge

In our first example, we consider a random walk in discrete time and we want to condition the
random walk to arrive at a specified position at a certain time. Our goal is to describe the law of
this conditioned process in a nice way.

Let {X;}, be i.i.d. random variables with E[X;] = 0 and denote by S,, = > X; with the
convention that Xg = 0. Fix some integer N > 1. Our first goal is going to be to understand what
happens to the distribution of the process S, for 0 < n < N if we condition on the random variable
Sn. To do this, we first note that .S, is a martingale in the filtration F,, = o(X; : 0 < i < n). We
will attempt to write the semi-martingale decomposition of S, in the filtration G,, = F,, vo(Sn).

To do this, we will chase the proof of the existence of the semi-martingale decomposition. We
want

L4 Sn = Mn + An7
L4 E[Mn| gn—l] = Mn—la
L4 E[Anl gnfl] = An7

which implies a recursion that yields

S
I
1=

Sk — E[Sk|Gr-1],

s
Il

1

NgE

Ap =) E[Sk|Gr-1] — Sk-1.

E
Il

1

We take the convention that the empty sum is zero. Notice that since Sy and Sy are both Gi
measurable for each k, so Sy = E[Sn|Gr—1]. On the other hand, by symmetry for each n,m >k
we see that F[X,,|Gr_1] = E[X|Gr-1]- Tt follows that

N
Sy = E[Sn|Gr-1] = E[Sk—1 + Z Xn|Gr—1]
n=k

=S, 1+ (N—-k+ I)E[Xk| Qk,l].
Rearranging, we see that for K <n < N,

Sn — Sk-1

B[Xn|Gr] = NoG-1)

Consequently, for n > 1,

M, = Z Sg — E[Sk| Gr—1] = Z Xk — E[Xk| Gr-1]
k=1 k=1
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S SN — Sg—1 5 SN — Sk1
=N x, - 2Nkl g N 2N T Pkl
2, X S SN = (k1)

and

2 [Sk|Gr—1] — Sk—1 = ZE[Xk\gk ) Z Sy — Sk 1
k=1 k=1 =

The key here is that we can still identify the martingale part of S, in its natural filtration even if
we condition on Sy .

5.1.2 Brownian bridge

Typically, Brownian bridge is introduced as a 'Brownian motion conditioned on B; = 0.” One
should be wary of this definition at first glance: P(B; = 0) = 0, so it is not entirely trivial to say
what this means. Questions of this type are going to be the main focus of this talk and we will
loosely structure the exposition around the Brownian bridge. Other, more involved, examples will
be interspersed along the way.

Weak limit using the Gaussian structure

One natural way to condition on the event {B; = 0} would be to take a limit in some sense of
what we get if we condition {B;};>0 on {|B1| <€} as e | 0.

Write B; = By —tB; +tB;. Since Brownian motion is a Gaussian process, linear combinations
of coordinate projections are jointly normal so we may compute covariances to see that for b(t) =
By —tBs,

{b(t)}ogtgl and Bl
are independent.

Exercise 5.1. Verify that the finite dimensional distributions of {b(t)}o<t<1 and By are indepen-
dent (i.e. show that the vector (b(t1),...,b(t,)) is independent of By for 0 <ty <--- <t, <1).

Once one knows that b(¢) and By are independent, we can now take weak limits without too
much difficulty.

Exercise 5.2. Let F'e Cy(C([0,1])). Show that as e — 0
E[F(B)||Bi] < €] = E[F(b(-) + -B)||B1| < €] = E[F(b(-))]-

This shows that defining b(t) = B; — tB; gives a sensible definition of Brownian bridge. Are
there others?

Enlargement of filtration

Let B, be standard Brownian motion and consider the process

t

dBs.

Xt:(l—t)f

0 — S
One can check that {X;}o<t<1 and {B; — tB1}o<t<1 have the same distribution.

Exercise 5.3. (If you have taken stochastic calculus.) Verify that {X;}o<t<1 has the same distri-
bution as { By —tB1}o<t<1- Hint: Show that {X;} and {B; —tB1} are Gaussian processes with the
same mean and covariance structure.
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Where did this formula come from? If we want to condition {B;} on {B; = 0}, we might
hope to understand what happens to the distribution of the process {B.} if we condition on the
random variable B; directly and then ‘set B; = 0’. Recall that B; comes equipped with the right
continuous completion of the filtration F; = o(B;s : s < t). One way to understand what happens
to B; if we condition on B; would be to try to write a stochastic differential equation for B; in
the right continuous completion of the filtration ]-"EBI) =0(Bs: s <t)vo(By). Inboth cases, I
am going to abuse notation and refer to both these filtrations and their completions by F; and
}-gBl). Define

~ " By — By
BtZBt*JiidS
0 — S

I claim that By is F ,EBI) Brownian motion. Note that based on Donsker’s theorem, we could have
guessed that this would be Brownian motion based on the semi-martingale decomposition of .S,
ino(X;:i<n)vo(Sy) above.

If true, then the semi-martingale decomposition of B; in this filtration is then given by

t B, — B,

B, = B, +
o l—s

ds.

A natural interpretation of Brownian bridge would then be a solution to

Xy

dt + dB
T

dx = —

which one can compute explicitly to be equal to X; defined above. As a comment, it follows from
the Markov property and the fact that By = 0 that B, is independent of By for all ¢.

Last time I gave this part of the talk, I went through the computation showing that B, is
Brownian motion. It is a bit tedious and I want to cover other things, so I will give a sketch and
leave the details as an exercise. Observe that for ¢ € [0,1)

E[B, — By| Fs vo(B1)] = E[B, — By| Fs vo(By — By)] = E[B; — B,|o(By — By)].

B; — B; and By — B, are jointly normal with mean and covariance matrix given by

0 t—s t—s
M=<O> Ez(ts 15)

so direct computation shows that

E[B; — By|o(B1 — B,)] = if ° (B, - B,).

— S

Using the previous comments and applying application the conditional Fubini’s lemma, we have

"' By — B,
2L u|o(By — By) | = 0.

E[Bt—BS|J-'§Bl)]—E[Bt—BS+ —

S

Exercise 5.4. Fill in the details of this argument showing that B, isa f,EBl) martingale. Showing
that this is actually Brownian motion is part of a later exercise.

5.2 Initial enlargement of filtration

The previous example is a bit unfulfilling because it is not clear where the formula for 8; came
from. It turns out that this is an example of a general phenomenon.

Let X be a random variable and let F; be the right continuous completion of the filtration
generated by a Brownian motion B;. Let A:(f) be a continuous version of the process E[f(X)| F¢].
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Since At(f) is a continuous martingale in a Brownian filtration, it is a theorem that there exists a
stochastic process A:(f) such that

A bit of work shows that there exists a predictable family of measures \;(dx) with the property
that

£ = [ @)
We will assume that there exists a predictable family of measures Xg(dx) satisfying

(o) = p(t.o(de), M) = [ f@hu(d) (21)
The meaning of this condition will become clear in the examples that follow. With this notation,
we have the following theorem. Note: It is the main result of this note.

Theorem 5.5. [Yor] Suppose that M; = Sé msdBs is a continuous martingale in the filtration F

and that X satisfies . Then under appropriate integrability conditions, there exists an ]-',EX)
local martingale M; with the property that

¢
M, = M, + f (X, s)mds
0

Proof. Let A e Fy and let f be a sufficiently regular test function. Then

E[1af(X)(My = My)] = E[1a (Ae(f) My — As(f)Mo)]
= E1a ([A(f), M1 — [M(f), M]s)]

where [X,Y]. denotes the quadratic variation of X and Y. This follows from an application of
stochastic integration by parts

N (F)M; = A ()M, = f Nl f)AM, + j MudA(F) + M), M — [A(), M,

where we require enough integrability that the first two terms on the right hand side, which are
F¢ local martingales, are F; martingales. Now, we note that

E[La (NG, Me — M), M1 = E [1,4 [ xummudu]

_B [1A f f (X, u))\u(da:)mudu] .

B [£(X)p(X, u)| F.] ff Naldz).

The result follows from the observation that

O

Exercise 5.6. In the setting of Theorem show that if My is Fy Brownian Motion, then M,
18 fEX) Brownian motion and is independent of X. Hint: Apply Lévy’s critereon and note that
Xer{o.
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5.2.1 Examples
Brownian bridge

In the setting that we started with, let X = B;, we can use the Markov property to compute

Ae(f) = E[f(B1)| Fi] = (Bl)lBt]
J f _(Bt—m>2d
— e 209 (x
1 — t)
In order to compute ;\t( f), we can compute
_)2 _ i—2)2
d;(;(?@_ﬁ) _2- B 1 e_%dBt
2rr(1 —1t) 1=t \/2n(1—1t)
For this measure, we then see that p(z,t) = 5= B 'We conclude that the semi-martingale decom-
position of B; in the filtration F EBI)
t
N B, — B,
Bi=Bi+ | 22—2ds
0 1 — S

where B is ]—',EBl) Brownian Motion.

Aside: why is this a natural way to condition?

One might wonder at this point how this method of conditioning fits into the usual framework of
conditioning random variables. We will use the Brownian Bridge as an example.
Take g € C[0, 1] fixed and let 2 € R. We consider the ordinary differential equation

10 =90+ [ 1%

Showing that this ODE has a unique solution and that the solution map is nice is left as an
exercise.
Exercise 5.7. Check that if g € C[0,1] and x € R then the ordinary integral equation

¢

z—f(s)
f0 = g0+ | T as,

O - s

has at most one solution f € C[0,1]. Show that if we define f(t) by

t

() = (1= 09(0) ot + (1= ) | =—dg(s),

then f lies in C[0, 1], satisfies the ODE, and has f(1) = x. Define the map

t

F(a:,g)={(1—t)g(0)+xt+(1—t) Olis (s)}o .

Find C > 0 so that | F(z,9) — F'(y,h)|cpo,y < C (|$ —yl+g— h”C[O,l])-
Hints: To show uniqueness, note that if f1 and fo are solutions then fort <T < 1,

t

sup [f1(s) = fol®)) < —— [ sup [f1(r) — falr)lds.

0<s<t 1-T 0 0<r<s

To show that f solves the ODE, it may help to find a differential equation satisfied by H(t) =

' £) 4. Note that fort < 1, Sé

0 T=s L_dg(s) is a Riemann-Stieltjes integral satisfying

1-s

[ T000) = sty 2 — 90 - | G280

o l—s t 0
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We saw above that there is a (B, : s < t) v ¢(B;) Brownian motion B so that

¢ B, — B,

B, = By +
o 1—s

ds.

The previous exercise shows that there is a Borel measurable (Lipschitz continuous) function
F:C[0,1] xR — C[0,1] so that B = F(B, By). It follows that for G € B,(C[0,1]) and A € o(By),

E[G(B)14] = E|B|G(F(B, B)))| 14]

where F is the expectation with respect to the Brownian motion B, which is independent of Bj.
More generally, this argument will work when we have strong solutions to our stochastic differential
equations, even if the integrals are not Riemann-Stieltjes. Put another way, we have identified the
conditional distribution of the process B given B, in the usual sense of a conditional expectation.

Stochastic integral with a deterministic integrand

Exercise 5.8. [J] Show that the semimartingale decomposition of By in the filtration .7-'90 ¢ "dB.)

is
_ t 0
B, = By -I—J 2€7SJ e "dB,ds
0 s

where By is .7:90 ¢ B

dent of Fy.

Brownian motion. Hint: S;O e *dB; is normally distributed and indepen-

A perpetuity, Dufresne identities, and the O’Connell-Yor polymer

This section is based in part on [§, Example 1.8]. Define a functional by

t
A = f e2Bs=5 (s
0

and note that Ay, exists almost surely.

Exercise 5.9. Prove thatlim;_,, A; exists almost surely. Hint: You can use the law of the iterated
logarithm for By.

Let f be a smooth test function compactly supported in (0, 00):

A(f) = E[f(Ax)| Fi]

o0

5 [f (At | eQBszBf(St)ds> ft]
t

_E [f (At n e2Bt—tAoo) |]-'t]

where A, (which depends on t) is independent of F;. We then see that

A(f)=E [f (At + €QBt_tAao)]
M) = B|2eP Ay p (A + 2Pt Ay) |

where the expectation E is only with respect to Ao, We would like to identify the distribution of
Aq. This will be presented in two ways.

29



Hints of Lamperti’s relation: Recall that G; = eBt=3t solves
dGy = GrdBy
It follows from Dubins-Schwarz that G; admits a representation as
Gi = Byt e2mo-sqs = Ba,

where § is Brownian motion. From this coupling, we see that 8y = 1 and A, has the same
distribution as inf{¢t > 0 : 8; = 0}. If you happen to know the distribution of this already, feel free
to jump to the semi-martingale decomposition directly.

Dufresne identity. For each fixed ¢ we have

t t
7, = ethftJ e 2Bsts 1o — J l(l,z(Bths)ﬂftds
0 0

t
- J e2(Bt=Bi—u)=u .,
0

t
d _
= J 2Bt dy = A,
0

Z; solves the SDE
dZy = (14 Z;)dt + 2Z:dB;

In particular, Z; is Markov. The limit A; — Ay holds almost surely and therefore in distribution,
so Zy converges in distribution as t — o0 to Ay . It will be helpful to know that this SDE is ergodic
on R, . The next exercise provides a proof of this.

Exercise 5.10. Check that the solution to the SDE

dZy = (14 Z;)dt + 2Z:dB;
Zy

Il
8

is given by

Conclude that Z; has exactly one stationary distribution, given by the distribution of Ay. Note
that this distribution is supported on Ry. (Hint: ze?P*=t — 0 a.s. and we have shown that
e?Bi—t S(t) e 2Bs+3ds converges in distribution)

To compute the stationary distribution for Z;, we recall that its generator L is given by

2

d d
_ 2
L=2x P (1+ x)—dx

Exercise 5.11. Verify that p(x) = r %e 2 1{z>0y 18 a non-negative and integrable solution to

2
2 [#p()] — - [opl) + pla)] = .

Show that for all p € CP(R,),
|| pte) £etaas =0
Ry
and conclude that the distribution of Ay is given by Cax=3e 2 Liz>oy for some C.
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In other words, Ay, has an inverse gamma distribution with parameters (3, 3). Put yet another
way, if Y has density proportional to y_%e_yl{ypo} (that is, a gamma distribution with parameter
%), then A, has the same distribution as %
Semi-martingale decomposition. Now that we have this distribution, we can compute the
semi-martingale decomposition of B; in the filtration F;*

o0
M) = C’J F(A + 2Bity)pS e dp
0

0
Af) = CJ 2e2Bety f1(Ay + eQBt_tx)x_%e—ﬁdx
0

-1

a0
= 20623t7tj (A + P tn)a™ e 2w da
0

@ 1 3 —1
= C’J f(A; + e2Briy) <1 - ) x 2e% dx.
0

T

Changing variables in both expressions, y = Ay + e?Bt=tx, 2 = =28t (y — A;) and e!~2Bedy = da
gives

eQBt,—t
plz,t) =1— A
It follows that
N t 623575

where B, is F f” Brownian motion and therefore is independent of Ao,. It is convenient to rewrite
this as

A Gt
Bi—-=B+-—| —d
LT TPty LAOO—ASS

A process level identity
This section is based on [0, [I1]. Note that pointwise is of the form

F() = g(t) + J: e/ (L e’ (S)> ds,

where f(t) = By — £, g(t) = B, + L, =2, and p(z) = —4—. As above, for nice f, g, ¢ this is a

z—Axp
solvable ordinary differential equation with a unique solution [0, Appendix]. We find that

-t Y Bts
Bt—2=Bt+2—1Og(1+A;o1f62Bs+6d8)'
0

This result is particularly interesting read backwards. Given a random variable v with inverse

Gamma (%, %) distribution which is independent of a Brownian motion By,

t
B; +t + log(y) — log <’y + J ezBS“ds)
0

is standard Brownian motion. Now, suppose that we have a two-sided Brownian motion B; and

recall that o(B; : s < 0) is independent of o(B; : s = 0). We now see that

0 t
B, +t+ logj e?Bstsds — logf e2Bsts s
-0 -
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is Brownian motion and independent of S(i " e2B:+sds. Hence if we define B by
. t 0
B, =—-By —t+ 1ogf e*Bstsds — logj e?Bstsds
—o0 —00

0 ¢
=B+ logf e*Betsds + logJ e2(Ba—Bi)+s—t g
— 00

—00

then B is Brownian motion. It will be convenient to have this identity in the form

o t ’ 0
B+ -=-B— -+ logJ- e?Betsgs — logf e*Bets s
2 2 o -

Define a functional by

t ¢
ap = logf 2Bi=Be)=(t=5)gg = 9B, —t + log (eao + J e2BS+Sds>
—© 0

With this definition, we see that
Bt :Bt+at—a()

Perhaps surprisingly, we can also show that {B, : 0 < s < t} is independent of {c : s > t}. This
follows from the fact that

o0 N A
oy = 1ogJ e2(Be=Bs)+t=s ¢
¢

This can be proven with a little calculus. To see this, set

t
Q: = J e?Btsds
-0

and notice that

t
oy = logJ 2BemBui)=t+sgs — _9B, — ¢+ log Q;
—0o0
2B, +t=—2B, —t + 2log Q; — 2log Qo

Recall that

J 62(Bths)+tfsds _ eththJ e~ 2Bs—5 g
s>t s>t

_ 872Bt7thJ\ Q;26233+Sd8.
s>t
Notice that
d —1 —2 2B —
%Qt = _Qt e*ems,

Consequently

J e2(Bi—Bs)+t—sgs 6_23‘_tQ§Q[1
s>t

_ 6—2Bt—t+log Q1 ay

=€
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5.3 Key words
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