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1 Large deviations for Markov chains

Given by Elnur Emrah in September 2015 Madison

1.1 Large deviation principle

Let pXiqiPN be i.i.d. random variables defined on a probability space pΩ,F ,Pq such that EXi “ 0
and VarXi “ 1. Let Sn “ n´1

řn
i“1Xi and µn denote the distribution of Sn for n P N. For

example, consider Xi „ N p0, 1q. Then Sn „ N p0, 1{nq and

Pp|Sn| ě `q “
2
?

2π

ż `8

`
?
n

e´y
2
{2dy “ e´

`2

2 n`opnq.

Similarly for 0 ă ` ă `1, we have

Pp|Sn| P r`, `
1sq “ e´

`2

2 n`opnq.

It is natural to ask if X is a general random variable with measure µ, what should we put on
the r.h.s. ? Motivation: for measure µ, what is the following I?

Pp|Sn| P r`, `
1sq “ e´Ip`qn`opnq. (1)

Definition 1.1. We say that µn satisfies an LDP with a rate function I if I : RÑ r0,`8s
is lower semicontinuous and, for all Borel sets B Ă R, we have

´ inf
xPB0

Ipxq ď lim inf
nÑ`8

logµnpBq

n
(lower bound)

´ inf
xPB

Ipxq ě lim sup
nÑ`8

logµnpBq

n
(upper bound).

Here, B0 and B denote the interior and the closure of B. Recall that I is lower-semicontinuous if
the sublevel set tI ď αu is closed for any α ă `8. This condition is equivalent to lim infyÑx Ipyq ě
Ipxq for any x P R.

Remark: it may take a while to understand this form. Here is the equivalent expressions, which
is very useful for me

e´pinfxPB̄ Ipxqq¨n`opnq ě µnpBq ě e´pinfxPB0 Ipxqq¨n`opnq

Note: you have to use B̄ in l.h.s, and use B0 in l.h.s

The definition of LDP can be given for sequences of measures on arbitrary topological spaces.
I will refer to LDP for measures on Euclidean spaces below.

There are many basic properties of LDP in Prof. Varadhan, which some one can
introduce to us in the future.

The answer to (1):

Ipxq “ sup
λPR

 

λx´ log Eµ
reλX s

(

“ sup
λPR

"

λx´
1

n
log EµnreλX s

*

.

where µ is measure of Xi and µn is measure of
ř

iXi.

A useful tool to establish LDP is Gärtner-Ellis theorem. We consider the following
setup. Let pZnqnPN be a sequence of random vectors in Rd. Let µn denote the distribution of Zn.
Consider the log-moment generating function Λnpλq “ log Ereλ¨Zns for λ P Rd. We assume that
the following conditions hold:
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1. The limit Λpλq “ limnÑ`8 n
´1Λnpnλq P p´8,`8s exists.

2. 0 P D0
Λ, where DΛ “ tλ P Rd : Λpλq ă 8u.

3. Λ is differentiable on D0
Λ.

4. (Steepness condition) For any x P BDΛ, lim λÑx
λPD0

Λ

|∇Λpλq| “ `8.

Theorem 1.1 (Gärtner-Ellis theorem). Under assumptions (a)-(d), pµnq satisfy an LDP with
convex, good (i.e. sublevel sets are compact) rate function Λ˚, the Legendre-Fenchel transform of
Λ given by

Λ˚pxq “ sup
λPRd

tλ ¨ x´ Λpλqu.

This theorem, in fact, a special case of the Gärtner-Ellis theorem; see, for example, [4], [12] for
the full theorem and its proof.

Example: Sum of i.i.d. random variables.

1.2 Application to the Markov chains

We now present an application of this theorem to the Markov chains in discrete time with finite
state space. We introduce some notation first. The state space is rN s “ t1, . . . , Nu. Let Π “

rπpi, jqsi,jPrNs be a stochastic matrix, that is, πpi, jq ě 0 and
ř

j πpi, jq “ 1 for each i P rN s. Let
Pπσ denote the Markov probability measure with transition matrix Π and initial state at σ P rN s.
Let Yn denote the state the chain visits at time n. We have

Pπσ pY1 “ y1, . . . , Yn “ ynq “ πpσ, y1qπpy1, y2q . . . πpyn´1, ynq

for any path py1, . . . , ynq in the state space. We assume that Π irreducible; this means that for
each pi, jq, there exists mpi, jq P N such that Πmpi,jqpi, jq ą 0.

Our goal is to obtain an LDP for random variables Zn “ n´1
řn
i“1 fpYiq, where f : rN s Ñ Rd

is a given function.
For the computation Λ, the limiting log-moment generating function, we will utilize the fol-

lowing result. For a vector u, we will write u " 0 if all components of u are positive.

Theorem 1.2 (Perron-Frobenius). Let B “ rBpi, jqsi,jPrNs be an irreducible matrix with positive
entries. Then B has a real eigenvalue ρ (called the Perron-Frobenius eigenvalue) with the following
properties.

(i) |λ| ď ρ for any eigenvalue of B.

(ii) There exist a left eigenvector u and a right eigenvector v corresponding to ρ such that u " 0
and v " 0.

(iii) ρ has multiplicity 1.

(iv) For all i P rN s and ϕ " 0, we have

lim
nÑ`8

1

n
log

«

N
ÿ

j“1

Bnpi, jqϕj

ff

“ lim
nÑ`8

1

n
log

«

N
ÿ

i“1

Bnpi, jqϕi

ff

“ log ρ.

Proof of (iv). Let c “ minj ϕj{minj vj , where v is the right eigenvector corresponding to ρ. We
have

N
ÿ

j“1

Bnpi, jqϕj ě
N
ÿ

j“1

Bnpi, jqvjc “ cρnvi

3



Taking logarithms, dividing through by n and letting nÑ `8 yields

lim inf
nÑ`8

1

n
log

«

N
ÿ

j“1

Bnpi, jqϕj

ff

ě log ρ.

We similarly obtain that the limsup is bounded by log ρ.

Theorem 1.3. For Markov chain, random variables Zn “ n´1
řn
i“1 fpYiq satisfy LDP with a rate

function Ipxq with
Ipxq “ sup

λPRd

tλ ¨ x´ log ρpΠλqu

where Πλ “ rπλpi, jqsi,jPrNs defined by πλpi, jq “ πpi, jqeλ¨fpjq

Proof: We now turn to LDP for the Markov chain pYnq. We have

Λnpnλq

n
“

1

n
logEπσ

«

exp

˜

n
ÿ

i“1

λ ¨ fpYiq

¸ff

“
1

n
log

»

–

ÿ

py1,...,ynqPrNsn

exp

˜

ÿ

i

λ ¨ fpyiq

¸

ź

i

πpyi´1, yiq

fi

fl

“
1

n
log

»

–

ÿ

py1,...,ynqPrNsn

ź

i

πpyi´1, yiqe
λ¨fpyiq

fi

fl ,

where y0 “ σ. We observe that the matrix Πλ “ rπλpi, jqsi,jPrNs defined by πλpi, jq “ πpi, jqeλ¨fpjq

has positive entries and is irreducible because it is obtained from such a matrix Π by multiplying
each entry with a positive number. Hence,

Λnpnλq

n
“

1

n
log

«

N
ÿ

yn“1

Πn
λpσ, ynq

ff

Ñ log ρpΠλq

as n Ñ `8, by the Perron-Frobenius theorem (applied with ϕ “ p1, . . . , 1q). Since the Perron-
Frobenius eigenvalue is positive, we have Λpλq “ log ρpΠλq P p´8,`8q for all λ P Rd. Hence, (a),
(b) hold and (d) is vacuously true. To check differentiability of Λ, we consider the characteristic
equation

0 “ detrxI ´Πλs “ xN ` aN´1pλqx
N´1 ` . . .` a1pλqX ` a0pλq,

where coefficients ai are smooth functions of λ. Let F px, λq denote the function of px, λq P Rd`1

on the far right-hand side. We have F pΛpλq, λq “ 0 and, because the Perron-Frobenius eigenvalue
has multiplicity 1, BxF pΛpλq, λq ‰ 0. Hence, it follows from the the implicit function theorem that
Λ is a smooth function of λ.

Then, the conclusion from the Gärtner-Ellis theorem is that µn (the distribution of Zn) satisfy
an LDP with rate function Ipzq “ supλPRdtλ ¨ z ´ log ρpΠλqu.

1.3 Key words:

1. Large deviation principle.

2. rate function

3. Gärtner-Ellis theorem

4. Perron-Frobenius theorem

5. Legendre-Fenchel transform

6. LDP of Markov chain
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1.4 Exercise:

Exercise 1. Let µn be probability measures on R and I : R Ñ r0,`8s be a function (not
necessarily lower semicontinuous). Define Ĩpxq “ mintIpxq, lim infyÑx Ipyqu for x P R.

(a) Show that Ĩ is lower semicontinuous. (Hence, the assumption of lower semicontinuity is not
restrictive. Ĩ is called the lower semicontinuous regularization of I).

(b) Suppose that the lower and the upper bounds above hold for all Borel sets B Ă R. Show that
these bounds still hold if I is replaced with Ĩ, that is,

´ inf
xPB0

Ĩpxq ď lim inf
nÑ`8

logµnpBq

n

´ inf
xPB

Ĩpxq ě lim sup
nÑ`8

logµnpBq

n
.

for all Borel sets B Ă R. Moreover, Ĩ is the unique lower semicontinuous function with range
r0,`8s that satisfy these bounds. (Hence, the rate function, if exists, is unique.)

Exercise 2. LetM1prN sq denote the set of probability measures on the set rN s “ t1, . . . , Nu.
We can identify each µ PM1prN sq with the vector pµj , . . . , µN q, where µj “ µptjuq for j P rN s.
The relative entropy of q PM1prN sq with respect to µ PM1prN sq is defined as

Hpq|µq “
ÿ

j

qj log

ˆ

qj
µj

˙

,

where we interpret 0 log 0 and 0 logp0{0q as 0. Suppose that qj ą 0 for all j P rN s. Show that

Hpq|µq “ sup
uPM1prNsq

uią0

ÿ

j

qj log

ˆ

uj
µj

˙

.
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2 Talagrand’s Inequalities

Given by Dae Han Kang in September 2015 Madison

2.1 Concentration inequalities

In this talk, we give powerful concentration inequalities of Talagrand for product probability
measures. This talk is primarily based on an article by Nicholas Cook [3].

Theorem 2.1. Let Ω “ Ω1 ˆ ¨ ¨ ¨ ˆΩn and P “ µ1 ˆ ¨ ¨ ¨ ˆ µn a product probability measure on Ω.
Then for all nonempty measurable subsets A Ă Ω,

ż

Ω

edCpx,Aq
2
{4 dPpxq ď 1{PpAq (2)

where dCpx,Aq is the convex distance (TBD) from x to A. As a consequence, by Chebyshev’s
inequality we have

PpActq ď
1

PpAq
e´t

2
{4 (3)

where At “ tx P Ω : dCpx,Aq ď tu.

One of the most useful corollary of Talagrand’s inequality is the following concentration in-
equality for convex Lipschitz functions.

Corollary 2.2. Let X “ pX1, X2, . . . , Xnq be a random variable with independent components
taking values in rc, c ` Rs pc P R, R ą 0q. Let F : Rn Ñ R be a convex L-Lipschitz function with
respect to `2 norm. Let MF pXq be a median for F pXq. Then for all t ě 0

Pp|F pXq ´MF pXq| ě tq ď 4e´t
2
{p4R2L2

q. (4)

Note: Convex is very important here.

2.2 Idea of proof

We must define the convex distance. To motivate the definition and to understand Talagrand’s
inequality, first we consider the classical bounded difference inequality. A function f : Xn Ñ R
has the bounded differences property if for some nonnegative constants c1, . . . , cn,

sup
x1,...,xn

x1iPX

|fpx1, . . . , xnq ´ fpx1, . . . , xi´1, x
1
i, xi`1, . . . , xnq| ď ci, 1 ď i ď n.

Theorem 2.3 (Bounded differences inequality). Assume that the function f satisfies the bounded
differences assumption with constants c1, . . . , cn and denote ν “ 1

4

řn
i“1 c

2
i . Let X “ pX1, . . . , Xnq

where Xi are independent random variables taking values in X . Then

P pfpXq ´ EfpXq ą tq ď e´t
2
{p2νq.

For the proof, see Theorem 6.2 in [2]. For any α P Rn`, the weighted Hamming distance
dαpx, yq between the vectors x, y P Ω1 ˆ ¨ ¨ ¨ ˆ Ωn is defined as

dαpx, yq “
n
ÿ

i“1

αi1txi‰yiu.

With this definition Theorem 2.3 implies that if f : Ω1 ˆ ¨ ¨ ¨ ˆ Ωn Ñ R is Lipschitz with respect
to dα, then

P pfpXq ´ EfpXq ě tq ď e´2t2{‖α‖2
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where ‖α‖ is the euclidean norm of α.
On the other hand, if instead of ’bounded differences property’, if we apply Theorem 2.3 for a

convex Lipschitz function with respect to `2 norm as in Corollary 2.2, we have

P pfpXq ´ EfpXq ą tq ď e´2t2{pnR2L2
q.

The power of Talagrand’s inequality is the dimension free subgaussian inequality.

Motivation for the definition of the convex distance
Now we give a motivation for the definition of the convex distance. Since the function fpxq “
dαpx,Aq is Lipschitz with respect to dα, by the bounded differences inequality

PpE dαpX,Aq ´ dαpX,Aq ě tq ď e´2t2{‖α‖2

.

However, by taking t “ E dαpX,Aq, the left-hand side becomes PpdαpX,Aq ď 0q “ PpAq, so the
above inequality implies

E dαpX,Aq ď

d

‖α‖2
2

log
1

P pAq
.

Then, by using the bounded differences inequality again, we obtain

PpdαpX,Aq ě t`

d

‖α‖2
2

log
1

PpAq
q ď e´2t2{‖α‖2

.

Thus, for example, for all vectors α with unit norm ‖α‖ “ 1,

P pdαpX,Aq ě t`

d

1

2
log

1

P pAq
q ď e´2t2 .

Thus, denoting u “
b

1
2 log 1

P pAq , for any t ě u,

P pdαpX,Aq ě tq ď e´2pt´uq2 .

On the other hand, if t ď
a

´2 logP pAq, then P pAq ď e´t
2
{2. On the other hand, since pt´uq2 ě

t2{4 for t ě 2u, for any t ě
b

2 log 1
P pAq the inequality above implies P pdαpX,Aq ě tq ď e´t

2
{2.

Thus, for all t ą 0, we have

sup
α:‖α‖“1

P pAq ¨ P pdαpX,Aq ě tq ď sup
α:‖α‖“1

minpP pAq, P pdαpX,Aq ě tqq ď e´t
2
{2.

The main message of Talagrand’s inequality is that the above inequality remains true even if the
supremum is taken within the probability. (See (3).)

Convex distance

The convex distance of x from the set A is defined by

dCpx,Aq “ sup
αPr0,8qn:‖α‖“1

dαpx,Aq.

There is an equivalent definition of the convex distance that is used for the proof. Let Ω as in the
theorem, and let A Ď Ω, x P Ω. We define UApxq Ď t0, 1u

n

UApxq “ ts P t0, 1u
n : Dy P A with yi “ xi whenever si “ 0u.

Now let VApxq Ď Rn be the convex hull of UApxq in Rn. If Ω is a vector space we say that a vector
s “ ps1, . . . , snq in the binary cube supports a vector z P Ω if zi ‰ 0 only when si “ 1, and define
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UApxq to be the set of vectors in the binary cube that support some element of A´ x. We claim
that dCpx,Aq “ dEp0, VApxqq where dE is the euclidean distance in Rn (Exercise).

Proof of the Corollary 2.2: We only consider the case R “ 1, c “ 0, and L “ 1. Key in the
passage from the theorem to the corollary is the observation that for the special case of A convex
in r0, 1sn, the convex distance controls the Euclidean distance.

Lemma 2.4. Let A convex in r0, 1sn and x P r0, 1sn. Then dEpx,Aq ď dCpx,Aq.

Proof. Suppose dCpx,Aq ď t. Then by the equivalent definition of convex distance, there exists
a convex combination w “

řm
i“1 λi~si of vectors ~si P UApxq 1 ď i ď m such that ‖w‖ ď t. Now

for each i, ~si P UApxq means there exists ~zi P A ´ x supported by ~si. Let z “
řm
i“1 λi~zi. Then

z P A´ x by convexity. Note that ‖z‖ ď ‖w‖ (Exercise). Thus dEpx,Aq ď ‖z‖ ď t, and the claim
follows.

Now we return to prove corollary 2.2. Note that the lemma and the theorem imply

E edEpX,Aq
2
{4 ď

1

PpX P Aq

for any convex subset A of r0, 1sn. Let a ě 0 and take A “ tF ď au. By the Lipschitz property,
if X P tF ě a` tu for some t ě 0, then dEpX,Aq ě t. Then by applying Chebyshev’s inequality
to the LHS, we have

PpF pXq ě a` tqet
2
{4 ď 1{PpF pXq ď aq.

Now taking a “MF pXq we get the upper tail estimate

PpF pXq ´MF pXq ě tq ď 2e´t
2
{4

and taking a “MF pXq ´ t we get the lower tail estimate

PpF pXq ´MF pXq ď ´tq ď 2e´t
2
{4

where the definition of median has given us the prefactors 2.

Proof of the main Theorem 2.1: We only sketch the proof. For the details see [3]. One can
prove the theorem by induction on n. For the case n “ 1, we must show

e1{4p1´ PpAqq ` PpAq ď 1{PpAq

which follows easily from e1{4p1´ uq ` u ď 1{u for all u P r0, 1s. For the inductive step we need a
lemma.

Lemma 2.5. For all u in p0, 1s we have

inf
λPr0,1s

ep1´λq
2
{4u´λ ď 2´ u.

Assume the result holds for n. Let Ω1 “ Ω1 ˆ ¨ ¨ ¨ ˆΩn a product space with product measure
P , and let Ωn`1 be another probability space with measure µn`1. Let Ω “ Ω1ˆΩn`1. Let A Ď Ω
and x P Ω. The proof of the result for n` 1 follows these steps:

1. Obtain an inequality for dCpx,Aq from consideration of “slices” and the “projections” of
A in Ω1, and convexity. For a point z P Ω we write z “ pz1, wq, z1 P Ω1, w P Ωn`1. Let
Apwq “ tz1 P Ω1 : pz1, wq P Au be the w-slice of A, and B “ YwPΩn`1Apwq be the projection
of A to Ω1. The key observation that gets the proof is that we can bound the convex distance
dCpx,Aq in terms of the distances to the sections Apwq and the projection B.

2. Apply Hölder’s inequality and the induction hypothesis.

3. Optimize using the lemma.

4. Use Fubini.

8



2.3 Applications

Example 1. The largest eigenvalue
Let M be an n ˆ n Hermitian matrix Then the largest eigenvalue λ1pMq “ ‖M‖op. Considering
the operator nomr of M as a function of the n2 components of the entries, we see that it is a

convex and 1-Lipschitz function from Rn
2

with euclidean distance to R` (Exercise). Hence, if X
is a random Hermitian matrix-where the diagonal entries and the real and imaginary parts of the
strict upper-triangle entries are independent bounded scalar random variables, and we identify the

space of Hermitian matrices with Rn
2

, then by Talagrand’s inequality we have that the random
variable λ1pXq is concentrated around its mean with sub-Gaussian tails independent of n.

Example 2. The longest increasing subsequence
Let X “ px1, . . . , xnq be uniformly distributed in Ω “ r0, 1sn, Jpxq be the longest increasing sub-
sequence of px1, . . . , xnq, and let Fnpxq “ |Jpxq| be its length. We will show that Fn concentrates
tightly around its median MFn.

Note that we cannot apply Corollary 2.2 as Fn is not convex. For example, with n “ 3,
taking x “ p0, 1, 0.6q and y “ p0.8, 0.0, 6q we have that F3pxq “ 2 “ F3pyq, but F3p

x`y
2 q “

F3pp0.4, 0.5, 0.6qq “ 3. However, Fn is 1-Lipschitz with respect to the Hamming metric. While
the full convex distance is not so easy to apply directly as euclidean distance, we will see that a
weight function suggests itself. Let a ą 0 and A “ tF pyq ď au. For any x, y P Ω,

Fnpyq ě Fnpxq ´
n
ÿ

i“1

1txiPJpxq,xi‰yiu.

If we let αpxq “ 1?
|Jpxq|

1Jpxq “
1?
Fnpxq

1Jpxq we have

dαpxqpx,yq “
1

a

Fnpxq

n
ÿ

i“1

1txiPJpxqu1txi‰yiu ě
1

a

Fnpxq
pFnpxq ´ Fnpyqq.

For the convex distance from x to A we have

dCpx,Aq ě
Fnpxq ´ a
a

Fnpxq
.

which is the key step of applying Talagrand inequality in this example. For t ě a the function
gptq “ pt´ aq{

?
t is monotone increasing. From this and Theorem 2.1 it follows that

P pFnpxq ě a` tq ď P p
Fnpxq ´ a
a

Fnpxq
ě

t

a` t
q

ď P pdCpx,Aq ě
t

a` t
q ď

1

P pAq
e´t

2
{4pa`tq.

Taking a “Mn :“MFnpxq we get the upper tail estimate

P pFnpxq ěMn ` tq ď 2 expp´
t2

4pMn ` tq
q

and taking a “Mn ´ t we get the lower tail estimate

P pFnpxq ďMn ´ tq ď 2 expp´
t2

4Mn
q.

It can be shown that Mn “ Op
?
nq, so the above concentration estimates are enough to prove

pFnpxq ´Mnq{
?
nÑ 0 a.s..
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2.4 Key words:

1. Concentration inequality

2. Talagrand’s inequality

3. Convex distance

4. Convex and Lipschitz function

2.5 Exercise:

1. Prove that dCpx,Aq “ dEp0, VApxqq as claimed.

2. Complete the proof of Lemma 2.4.

3. Prove that λ1pMq in Example 1 is a convex and 1-Lipschitz function on Rn
2

.
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3 Concentration of Measure and Concentration Inequalities

Talks given by Jessica Lin October 2015 in Madison, WI

The purpose of these lectures is to discuss some examples of classical concentration inequalities
used in probability theory, as well as to clarify the connection between probabilistic concentration
inequalities and the analytic subject of concentration of measure.

The typical setting of concentration inequalities is to consider X1, X2, . . . , Xn independent
random variables, and f : Rn Ñ R a measurable function. We let Z “ fpX1, X2, . . . , Xnq and we
aim to identify a function g : RÑ R, with limλÑ0 gpλq “ 0 such that

P r|Z ´ EZ| ě λs ď gpλq.

The main things to consider will be:

• What hypotheses do we need to assume about f?

• What type of function is g?

.
As an introductory example, the classical Chebyshev inequality yields that for f measurable,

P r|Z ´ EZ| ě λs ď P
“

pZ ´ EZq2 ě λ2
‰

ď
VarrZs

λ2
.

This is an example of one of the most elementary concentration inequalities, and so long as we
can get control on the VarrZs, then we have some type of concentration phenomena. The goal of
these lectures is to see

• How can we control VarZ?

• Can we get control of higher moments?

3.1 Concentration of Measure, Poincare Inequalities and the Efron-
Stein Inequality

We begin by describing an analogous formulation of concentration inequalities, which is the subject
of concentration of measure.

Definition 3.1. Let pX,µ, dq denote a metric probability space. We say that µ satisfies concen-
tration of measure with concentration rate g : RÑ R such that for all A Ď X with µpAq ą 1

2 , we
have that for

µpAcrq ď gprq, Ar :“ tx P X : dpx,Aq ď ru ,

This looks very similar to one of the formulations of the Talagrand inequality we saw:

µpAqµpAcrq ď e´cr
2

By a simple rearrangement, this implies that

µpArq ě 1´
1

µpAq
e´cr

2

ě 1´ Ce´cr
2

,

where we used that µpAq ě 1
2 .

We now state what is meant by a Poincare inequality, which we will see plays an important
role in obtaining concentration phenomena:
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Definition 3.2. Consider a metric probability space pX,µ, dq. The measure µ is said to satisfy a
Poincare inequality with constant C if

Varrf s ď C

ż

X

|∇f |2 dµ for all f : X Ñ R . (5)

The notion of ∇f is interpreted in the distributional sense, and thus the inequality makes sense
for all functions f P H1.

An interpretation of a Poincare inequality is to say that given a value for variance, there is a
smoothest function which has that variance (since any other function will have a larger L2-norm
of the gradient). We next show that indeed, having a Poincare inequality is a sufficient condition
to have concentration of measure:

Theorem 3.1 ([1], Theorem 2, p. 15). Suppose pµ,X, dq satisfies a Poincare inequality, and µ is
absolutely continuous with respect to the volume element. If µpAq ě 1

2 , then for all r ą 0,

µpAcrq ď e
´ r

3
?

c .

Proof. Let A,B denote two subsets of X such that dpA,Bq “ ε, for ε to be chosen. (We should
think of B “ Acε). Let a :“ µpAq, and b “ µpBq. We then define

fpxq “

$

’

&

’

%

1
a x P A
1
a ´

1
ε

`

1
a `

1
b

˘

min tε, dpx,Aqu x P XzpAYBq

´ 1
b x P B

Note that f belongs to H1. Thus, we are able to apply the Poincare inequality. We have that
since f is constant on AYB,

∇fpxq “ 0 for x P AYB.

Otherwise, we have that µ-almost surely,

|∇fpxq| ď 1

ε

ˆ

1

a
`

1

b

˙

.

Therefore, we have that

ż

|∇fpxq|2 dµ ď 1

ε2

ˆ

1

a
`

1

b

˙2

p1´ a´ bq.

Moreover, we consider that if f̄ “
ş

f dµ, then

Varrf s “

ż

pf ´ f̄q2 dµ

ě

ż

A

pf ´ f̄q2 dµ`

ż

B

pf ´ f̄q2 dµ

ě a

ˆ

1

a
´ f̄

˙2

` b

ˆ

´
1

b
´ f̄

˙2

.

The right hand side is minimized when f̄ “ 0, which implies in particular that

Varrf s ě
1

a
`

1

b
.

By the Poincare inequality, we have then that

1

a
`

1

b
ď
C

ε2

ˆ

1

a
`

1

b

˙2

p1´ a´ bq.

12



Rearranging this inequality, we have that

b ď
1´ a

1` ε2{p2Cq

Now, we let B “ Acε and ε2

2C “ 1, or ε “
?

2C. Recall a :“ µpAq, and b “ µpBq. Thus,

µpAcεq ď µpAcq{2.

Notice that
pAεqε “ tx : dpx,Aεq ď εu Ď tx : dpx,Aq ď 2εu

which implies that
µpAc2εq ď µppAεq

c
εq.

Therefore, by iterating, this implies that

1´ µpAkεq ď 2´k´1.

Thus, for any r ą 0, let k such that kε ď r ă pk`1qε. Since µpAcrq is monotonically non-increasing
in r, we have that by the choice of ε,

1´ µpArq ď 2´k´1 ď exp

ˆ

´
log 2
?

2C
r

˙

Since log 2
?

2
ą 1

3 , we get that

1´ µpArq ď exp

ˆ

´
r

3
?
C

˙

.

Thus, we see that the property of having a Poincare inequality leads to concentration of
measure.

In the context of probability theory, we now would like to ask:

1. What does a Poincare inequality look like in the setting of random variables?

2. When does a Poincare inequality hold?

The main statement which encodes these two results is the Efron-Stein inequality:

Theorem 3.2 (Efron-Stein Inequality). Let f be measurable, and tXiu
n
i“1 independent random

variables. Let Z :“ fpX1, X2, . . . , Xnq. Then

VarrZs ď
n
ÿ

i“1

ErpZ ´ Ei Zq2s (6)

where
Ei Z :“ ErZ | X1, X2, . . . , Xi´1, Xi`1, . . . Xns.

Equivalently, if we let
!

X̃i

)n

i“1
denote an independent copy of random variables, then by defining

Zi “ fpX1, X2, . . . , Xi´1, X̃i, Xi`1, . . . , Xnq,

we have that

VarrZs ď
1

2

n
ÿ

i“1

ErpZ ´ Ziq2s. (7)

13



This theorem tells us that so long as we are studying a measurable function of independent ran-
dom variables, this is enough to guarantee a Poincare inequality. Instead of proving the statement,
we will discuss why (6) is equivalent to (7): Consider that, in general, if X,Y are independent
identically distributed random variables, then

ErpX ´ Y q2s “ ErX2 ´ 2XY ` Y 2s

“ 2ErX2s ´ 2pErXsq2

which implies that

VarrXs “
1

2
ErpX ´ Y q2s.

Thus, by definition of Zi, Zi is iid with Z. This implies that

Ei
“

pZ ´ Ei Zq2
‰

“
1

2
Ei

“

pZ ´ Ziq
2
‰

.

Taking expectation of both sides, we have that

ErpZ ´ Ei Zq2s “
1

2
E
“

pZ ´ Ziq
2
‰

,

so by (6),

VarrZs ď
1

2

n
ÿ

i“1

E
“

pZ ´ Ziq
2
‰

,

which is (7).
Notice that (7) truly looks like a Poincare inequality since

Z ´ Zi „ ∇Xi
Z

since it measures the changes in Z with respect to changes in Xi.

Remark 3.3. We point out that equality in (7) is achieved in the case when Z “
řn
i“1Xi. This

implies that sums of random variables are the least concentrated of all measurable functions of
pX1, X2, . . . , Xnq.

Remark 3.4. The primary purpose of the Efron-Stein inequality is to provide a way of com-
puting VarrZs. In most applications, we will couple the Efron-Stein inequality with Chebyshev’s
inequality. However, we can take this further by not just considering f which is given, but we can
apply Efron-Stein to any monotone function hpfq to compute the variance. This is why one is
able to obtain something with exponential decay, but not Gaussian. For reference, we also state
the “concentration version” with exponential bounds, which we refer to as the Gromov-Milman
Theorem:

Theorem 3.5 (Gromov-Milman, [10], p.34). Let pX,µ, dq denote a metric probability space, and
suppose it satisfies a Poincare inequality with constant C. Let f be a 1-Lipschitz function. Then
for every t ą 0,

Pr|f ´ E f | ą ts ď 240e´
?

2
C t.

Next, we provide some examples of interesting applications of the Efron-Stein inequality in the
context of probability:

Example: Bounded Differences. The Efron-Stein will prove to be particularly useful in the
context of random variables which have bounded differences. Let f be measurable, and tXiu

n
i“1

independent random variables. Let Z :“ fpX1, X2, . . . , Xnq, and suppose f has the property that
for each i, there exists ci so that

ˇ

ˇ

ˇ
fpX1, X2, . . . , Xi, . . . , Xnq ´ fppX1, X2, . . . , X̃i, . . . , Xnq

ˇ

ˇ

ˇ
ď ci.

14



Then by the Efron-Stein inequality, we have

VarrZs ď
1

2

n
ÿ

i“1

c2i .

Checking the property of bounded differences is usually quite straightforward, and thus the Efron-
Stein inequality an easy way of obtaining concentration from this. We next show an application
to bin-packing:

Suppose tX1, X2, . . . , Xnu Ď r0, 1s are independent random variables. What is the minimal
number of bins into which tXiu can be packed such that the sum of Xi in each bin does not exceed
1?

Let

Z “ fpX1, . . . , Xnq “ minimum number of bins to pack satisfying the rule above.

Notice that if we adjust any Xi,

|fpX1, . . . , Xi, . . .q ´ fpX1, . . . , X̃i, . . .q| ď 1.

Thus, this choice of f satisfies bounded differences, which implies by the Efron-Stein inequality
that

VarrZs ď
n

2
.

Therefore, with Chebyshev’s inequality, we have that

P
”

|Z ´ EZ| ě n
1`ε

2

ı

ď Cn´ε.

3.2 Logarithmic-Sobolev Inequalities

We next consider the following. The Efron-Stein gives us excellent control over the concentration,
with estimates that are even exponential in nature. However, how can we obtain Gaussian bounds?
It turns out to obtain Gaussian bounds, we need something which is stronger than a Poincare
inequality. The right tool we need is a Log-Sobolev inequality (LSI):

Definition 3.3. Let pX,µ, dq denote a metric probability space. µ satisfies a LSI with constant
C if

ż

f2 log f2 dµ´

ż

f2 log

ˆ
ż

f2dµ

˙

dµ ď 2C

ż

|∇f |2 dµ

Erf2 log f2s ´ Erf2 logErf2ss ď 2C Er|∇f s2s

For specialists in the field, the left-hand side can be identified as the entropy of the function
f . This property is referred to as a Log-Sobolev inequality in light of its connection with classical
Sobolev inequalities:

Consider that the classical Sobolev inequality states that W 1,ppRdq Ď Lp˚pRdq for

1

p˚
“

1

p
´

1

d
.

Thus, we see integrability of |∇f | implies higher integrability of the function itself, depending on
the dimension. The LSI can be seen as a similar estimate which does not depend on dimension!
This is why it is referred to as the LSI, since it gives us similar improvement of integrability with
logarithmic weights.

Next, we show that a Log-Sobolev inequality is indeed stronger than a Poincare inequality:

15



Proposition 3.6 ([1], Proposition 3, p.28). Let pX,µ, dq denote a metric probability space. If µ
satisfies LSI with constant C, then µ satisfies a Poincare inequality with constant C.

Proof. The proof follows by a clever, yet standard trick in Taylor expansion. We study the Taylor
expansion of the LSI applied to 1` εf , where f is any bounded function with 0 mean.

On the right-hand side of LSI, we have that

ż

|∇p1` εfq|2 dµ “ ε2

ż

|∇f |2 dµ.

Next, we investigate the asymptotics of the left-hand side. We consider that

E
“

p1` εfq2 logpp1` εfq2q
‰

“ 2E
“

p1` εfq2 logp1` εfq
‰

.

Next, we recall that according to the Taylor expansion of logp1` xq,

logp1` εfq “ εf ´
ε2f2

2
` opε2q.

Thus,

E
“

p1` εfq2 logpp1` εfq2q
‰

“ 2E
„

p1` εfq2
ˆ

εf ´
ε2f2

2

˙

` opε2q

“ 2εErf s ` 4ε2 Erf2s ´ ε2 Erf2s ` opε2q

“ 3ε2 Erf2s ` opε2q

where in the last line, we used that f has mean 0. Next, we check the second term,

Erp1` εfq2s logErp1` εfq2s “ p1` ε2 Erf2s logp1` ε2Erf2sq

“ p1` ε2 Erf2sqpε2 Erf2sq ` opε2q

“ ε2 Erf2s ` opε2q.

Therefore, combining these, we have that according to the LSI,

2ε2 Erf2s ` opε2q ď 2Cε2

ż

|∇f |2 dµ

which implies that

Varrf s ď C

ż

|∇f |2 dµ,

which is indeed the Poincare inequality. Moreover, the inequality is unchanged by adding constants
to f , and for any smooth f with compact support. By density, this implies that it holds for any
f P H1pRdq as desired.

Finally, we show that pX,µ, dq satisfying LSI implies that we have Gaussian concentration
bounds:

Theorem 3.7 (Herbst). [[10], p. 35, Theorem 21] Let pX,µ, dq denote a metric probability space,
satisfying a Log-Sobolev inequality. Then for every f : X Ñ R Lipschitz with constant 1, for every
λ P R,

Ereλpf´Erfsqs ď eCλ
2
{4

and
Pr|f ´ E f | ą ts ď 2e´t

2
{C
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Proof. Let λ ą 0. The case λ ă 0 can be proved similarly. We apply the LSI to the function eλf{2.
This implies that

ż

eλfλf dµ´

ż

eλf log

ˆ
ż

eλfdµ

˙

dµ “ λfEreλf s ´ Ereλf logpEreλf sq

ď C

ż

ˇ

ˇ

ˇ
∇eλf{2

ˇ

ˇ

ˇ

2

dµ

ď
C

4

ż

λ2|∇f |2eλf dµ

ď
C

4
λ2Ereλf s

using that f is 1-Lipschitz.
Next, we define hpλq :“ Ereλf s, so that h1pλq “ Erfeλf s. We may rewrite the above inequality

as

λh1pλq ´ hpλq log hpλq ď
C

4
λ2hpλq (8)

so that
ˆ

1

λ
log hpλq

˙1

ď
C

4
.

Also, we have that

lim
λÑ0

logphpλqq

λ
“ lim
λÑ0

h1pλqhpλq “ lim
λÑ0

Ereλf s

Ereλf s
“ Erf s

Combining these two pieces of information, we have

1

λ
log hpλq ď Erf s `

C

4
λ

Thus,

Ereλf s “ hpλq ď eλEfe
C
4 λ

2

and this implies that

Ereλpf´Efqs ď e
C
4 λ

2

Notice that the same argument holds for λ ă 0, since we multiply/divide by λ twice.
Finally, by Markhov’s inequality, we have that

Pr|f ´ Ef | ě λs ď Prf ´ Ef ě λs ` Prf ´ Ef ě ´λs ď 2
Ereλpf´Efqs

eλ2 ď 2e´Cλ
2

.

Next, as before, we state the probabilitistic version of the LSI:

Proposition 3.8. Let Z “ fpX1, X2, . . . , Xnq, where tXiu
n
i“1 are independent, and f is measur-

able. Then we have for every s P R,

sE
“

ZesZ
‰

´ EresZs logEresZs ď
n
ÿ

i“1

EresZψp´spZ ´ Z 1iqqs (9)

where ψpxq “ ex ´ x´ 1 and Z 1i :“ fpX1, . . . , X
1
i, . . . Xnq.

Equivalently, we have that

sErZesZs ´ EresZs logEresZs ď s2 E

«

n
ÿ

i“1

pZ ´ Z 1iq
2esZ 1tZąZ1iu

ff

(10)
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Next we discuss some applications and examples:

Bounded Differences. Again, we study the situation where we have bounded differences:

|Z ´ Z 1i| ď ci.

By (10), we have

sErZesZs ´ EresZs logEresZs ď s2
n
ÿ

i“1

c2i EresZs.

Notice it has the same form of (8). Then with similar proof as the one for the Herbst Theorem,
we have

Pr|Z ´ EZ| ą ts ď e´t
2
{
řn

i“1 c
2
i (11)

Finally, we provide an application to Random Matrices, found in [7] . Let Aij denote a
symmetric, real matrix with entries Xi,j for 1 ď i ď j ď n, which are independent random
variables, and suppose that |Xi,j | ď 1.

Let Z “ λ1 denote the largest eigenvalue of Aij . We check to see if Z satisfies the bounded
differences property. We have that

λ1 “ vTAv “ sup
}u}“1

uTAu.

Let A1i,j denote the matrix Ai,j but replacing Xi,j by an independent copy, called X 1i,j . Then we
have that

|Z ´ Z 1i,j | ď |v
T pAij ´A

1
ijqv|

ď pvivjpXi,j ´X
1
i,jqq

ď 2|vivj |,

using that |Xi,j | ď 1. Therefore, we have that

ÿ

1ďiďjďn

pZ ´ Zi,jq
2 ď 4

ÿ

1ďiďjďn

|vivj |
2 ď 4

˜

n
ÿ

i“1

v2
i

¸

“ 4

Therefore, by (11), we have that

Pr|Z ´ EZ| ą ts ď e´t
2
{16

3.3 Key Words:

1. Concentration of Measure

2. Poincare Inequality

3. Efron-Stein inequality

4. Bounded Differences

5. Log-Sobolev Inequality

3.4 Exercises

Exercise 1: Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be two sequences of coin flips. Show that with
large probability (larger than 1/2), the length of the longest common sequence is within Op

?
nq

of the mean.

Exercise 2: Show that (9) implies (10)
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4 Comparison methods and applications.

Talks given by HaoKai Xi, November 2015 in Madison, WI

Let tX1, ..., Xn, ...u be a sequence of random variables. For each n “ 1, 2, ... let Fn be a
function of n variables. If FnpX1, ..., Xnq has a limiting distribution, how to find it? Assume there
is another sequence of variables tY1, ..., Yn, ...u, Yn is “close” to Xn for each n, and we know the
limiting distribution of FnpY1, ..., Ynq. Then we might verify that FnpX1, ..., Xnq has the same
limiting distribution by showing that E g pFnpX1, ..., Xnqq ´ E g pFnpY1, ..., Ynqq converges to 0 for
all bounded continuous function g through a interpolation or some replacement trick. In this
paper, I will focus on three methods:

1. Lindeberg replacement trick;

2. Comparison through Xs
n “

?
sX1

n `
?

1´ sX0
n, where X0

n “ Xn, X1
n “ Yn.

3. Comparison through Xs
n “ X snX1

n ` p1 ´ X snqX0
n where Xs

n is a Bernoulli random variable
with PpX sn “ 1q “ s and PpX sn “ 0q “ 1´ s.

4.1 Lindeberg replacement trick

The main idea is replacing Xk with Yk iteratively for k “ 1, 2, ..., n in FnpX1, ..., Xnq so it will
become FnpY1, ..., Ynq and also produces some error in distribution. Next we illustrate how to use
this method to prove the Central Limit Theorem. It suffices to show the following version

Theorem 4.1 (Central Limit Theorem). Assume X1, ..., Xn, ... is a sequence of bounded i.i.d.
random variables with EX1 “ 0 and EX2

1 “ 1, then we have

X1 ` ¨ ¨ ¨ `Xn
?
n

d
ÝÑ N p0, 1q

Proof. Let Y1, ..., Yn, ... be a sequence of i.i.d. Gaussian random variables with mean 0 and variance
1 that are independent of X1, ..., Xn, .... For X “ X1, Y1 or 0, denote

Zi,npXq :“ pY1 ` ¨ ¨ ¨ ` Yi´1 `X `Xi`1 ` ¨ ¨ ¨ `Xnq{
?
n

where 1 ď i ď n and n “ 1, 2, .... Clearly we have Zn,npYnq
d
“ N p0, 1q for all n. Therefore it

suffices to show that for any g P C3pRq with bounded derivatives up to 3rd order,

ErgpZn,npYnqq ´ gpZ1,npX1qqs Ñ 0

Actually

ErgpZn,npYnqq ´ gpZ1,npX1qqs “

n
ÿ

i“1

ErgpZi,npYiqq ´ gpZi,npXiqqs (12)

By Taylor expansion, we have

E gpZi,npXqq

“ E gpZi,np0qq `
1
?
n
E g1pZi,np0qqX `

1

2n
E g2pZi,np0qqX2 `

1

6n3{2
E g3pZi,npX̃qqX3 (13)

where X̃ is between 0 and X. Notice that Zi,np0q is independent of Xi and Yi, and Xi and Yi
have the same first and second moment, hence we have

|ErgpZi,npYiqq ´ gpZi,npXiqqs| ď Cn´3{2 (14)

where C “ EX3
1 ¨ sup

xPR
g3pxq. Thus

|ErgpZn,npYnqq ´ gpZ1,npX1qqs| ď Cn´1{2 (15)

Let nÑ8 and we are done.
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4.2 Xs “
?
sX1 `

?
1´ sX0 type interpolation

We use this interpolation to prove Theorem 4.1:

Proof. Denote

Zsn “
Xs

1 ` ¨ ¨ ¨ `X
s
n?

n

where Xs
k “

?
sX1

k`
?

1´ sX0
k for all k and s P r0, 1s. For any g P C3pRq with bounded derivatives

up to 3rd order, we want to show that

ErgpZ1
nq ´ gpZ

0
nqs Ñ 0.

By foundamental theorem of calculus, it suffices to show that

sup
0ăsă1

E
dgpZsnq

ds
“ Opn´1{2q

Actually,

E
dgpZsnq

ds
“E g1pZsnq

n
ÿ

i“1

BZsn
BXs

i

dXs
i

ds

“
1
?
n

n
ÿ

i“1

E g1pZsnqps´1{2X1
i ´ p1´ sq

´1{2X0
i q (16)

For each 1 ď i ď n, denote Z
spiq
n “ Zsn ´X

s
i {
?
n, we have

g1pZsnq “ g1pZspiqn q `
1
?
n
g2pZspiqn qXs

i `
1

2n
g3p rZspiqn qpXs

i q
2 (17)

for some rZ
spiq
n between Zsn and Z

spiq
n . Now plug (19) into (16), since Z

piqs
n is independent of X0

i

and X1
i , X0

i and X1
i have vanishing first moment and the same second moment, we get

ˇ

ˇ

ˇ

ˇ

E
dgpZsnq

ds

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

i“1

1

2n3{2
sup
xPR

|g3pxq| ¨ |EX1|
3 “ Cn´1{2.

Next let’s look at an example from random matrix, which I find in [?]. Denote by Xn an nˆn
Wigner matrix, in which the upper triangular entries pXnqij , i ă j are real random variables with
mean 0 and variance 1{n and the diagonal entries pXnqii are real random variables with mean
0 and variance 2{n. Denote by Yn an n ˆ n GOE, in which the upper triangular entries has
distribution N p0, 1{nq and the diagonal entries has distribution N p0, 2{nq. Assume we have that
the asymptotic eigenvalue density of GOE is the semi-circular law, we show by a interpolation
trick that the asymptotic eigenvalue density of Wigner matrices is also the semi-circular law.

Lemma 4.2. Let tXnu be the Wigner matrices that satisfy Ep
?
npXnqijq

p ď Cp for all n, p, i, j
where Cp is independent of n, i, j. Let Yn be GOE, then for any z with Imz ą 0

E
ˆ

1

n
TrGpXn, zq

˙

´ E
ˆ

1

n
TrGpYn, zq

˙

Ñ 0.

where GpX, zq “ pX ´ zq´1, the resolvent of X.
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Convention of notations: In the rest of the paper I ignore the parameter n for matrices, so
without mentioning specifically, all matrices are n by n.
Denote by Xs,λ

pijq the matrix that satisfies

pXs,λ
pijqqab “

$

’

&

’

%

Xs
ab if δaiδbj “ 0 and δajδbi “ 0

λ if δaiδbj “ 1

λ if δajδbi “ 1

Denote by ∆s
pijq the matrix that satisfies

p∆s
pijqqab “

$

’

&

’

%

0 if δaiδbj “ 0 and δajδbi “ 0

Xs
ij if δaiδbj “ 1

Xs
ji if δajδbi “ 1

Also,
Gs :“ GpXs, zq,

Gs,λ
pijq :“ GpXs,λ

pijq, zq

Proof. It is easy to check that if X is Hermitian then }GpX, zq} ď 1
Imz .

We choose the interpolation Xs “
?
sX1 `

?
1´ sX0 with X0 “ X and X1 “ Y . We have

1

n
E
d

ds
TrGs “´

1

n
ETrtpGsqps´1{2X1 ´ p1´ sq´1{2X0qpGsqu (18)

Expanding Gs at Xs
ij we get

Gs “ Gspijq ´G
s
pijq∆

s
pijqG

s
pijq `G

s∆s
pijqG

s
pijq∆

s
pijqG

s
pijq (19)

Plug (19) into (18) and multiply out s´1{2X1 we get

ETrpGsqps´1{2X1qpGsq “s´1{2 ETrpGsqp
ÿ

1ďiďjďn

∆1
pijqqpG

sq

“
ÿ

1ďiďjďn

!

Trr´2EpGspijqq
3 Ep∆1

pijqq
2s `Opn´3{2q

)

“ ´2
ÿ

1ďiďjďn

!

EpGspijqq
3
ii Ep∆1

pijqq
2qii ` p1´ δijqEpGspijqq

3
jj Ep∆1

pijqq
2qjj `Opn

´3{2q

)

We get the same first two terms in the result of the computation of ETrpGsqpp1´ sq´1{2X0qpGsq.
Therefore in (18) these terms cancel out and it remains Opn´1{2q.

4.3 Xs “ X sX1 ` p1´ X s
qX0 type interpolation

This method is first developed in [6].
Just like the previous methods, we start with computing Bs EF pXsq for some function
F : Rn Ñ C. The advantage of such interpolation is that this derivative is very clean, as shown in
the following lemma.

Lemma 4.3. For F : Rn Ñ C we have

Bs EF pXsq “
ÿ

1ďiďn

EF pXs,X1
i

piq q ´ EF pXs,X0
i

piq q

provided all the expectations exist. Xs,λ
piq is Xs with the ith component replaced with λ.
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Proof. Let µsi be the distribution of Xs
i so we have

dµsi “ sdµ1
i ` p1´ sqdµ

0
i .

For simplicity of notations,
piq
ś

k

means
ś

1ďkďn,k‰i

and
ř

k

means
ř

1ďkďn

in the equations below.

Bs EF pXsq “Bs

ż

F pXq
ź

k

dµsk

“
ÿ

i

ż

Bs
“

sF pXqdµ1
i ` p1´ sqF pXqdµ

0
i

‰

piq
ź

k

dµsk

“
ÿ

i

ż

F pXqdµ1
i

piq
ź

k

dµsk ´

ż

F pXqdµ0
i

piq
ź

k

dµsk

“
ÿ

i

EF pXs,X1
i

piq q ´ EF pXs,X0
i

piq qx

Exercise: Prove the CLT using this interpolation.

We can exploit Bs EF pXsq further. Consider the following question, suppose we know that
EF pX0q ď Ψ for some small Ψ, and we want to show that EF pX1q ď cΨ for some constant c.
We can use Gronwall’s inequality, with which it suffices to show

Bs EF pXsq ď Ψ` EF pXsq.

This requires us to have a self-consistent estimate for Bs EF pXsq, i.e. we want to write it in term
of Xs.

Lemma 4.4. Assume F is analytic and Xs has finite moments for all s,

Bs EF pXsq “
ÿ

kě1

ÿ

i

Ks
k,i E

ˆ

B

BXs
i

˙k

F pXsq

where Ks
k,i is the coefficient of the kth order term of the formal power series of

E etX1
i ´ E etX1

0

E etXs
i

Proof. We fix i and abbreviate fpxq :“ F pXs,x
piq q, ξ :“ Xs

i , ζ :“ X0
i , ζ 1 :“ X1

i . By Taylor
expansion,

E fpζq “ E fp0q `
ÿ

kě1

E f pkqp0qE ζk{k! (20)

We use
E f plqp0q “ E f plqpξq ´

ÿ

kě1

E f pl`kqp0qE ξl{l!

repeatedly on (20) to get

Epfpζq´fp0qq “
ÿ

qě0

p´1qq
ÿ

k,k1,...,kqě1

E f pk`k1`¨¨¨`kqqpξqE ζk{k!
q
ź

j“1

E ξkj {kj ! “
ÿ

mě1

Kmpζ, ξqE f pmqpξq

where

Kmpζ, ξq “
ÿ

qě0

p´1qq
ÿ

k,k1,...,kq“m

E ζk{k!
q
ź

j“1

E ξkj {kj ! “
1

m!

ˆ

d

dt

˙mˇ
ˇ

ˇ

ˇ

t“0

E etζ ´ 1

E etξ

Now by Lemma 4.3, summing over i we get the desired result.
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4.4 Key words

• Comparison method

• Lindeberg replacement trick

• Interpolation

• Gronwall’s inequality

4.5 Exercise

Prove the CLT using the second interpolation method. (The 3rd method in this talk.).
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5 An introduction to initial enlargement of filtration.

Talks given by Christoper Janjigian, November-December 2015 in Madison, WI

These incomplete notes are a work in progress. They are intended for a two-part talk in the
graduate probability seminar at the University of Wisconsin - Madison. The goal is to introduce
listeners to the techniques of initial enlargement of filtration and the Doob h transform, which
offer perspectives on what it means to condition a stochastic process on a potentially measure zero
event. We will be particularly interested in cases when this conditioning preserves some regularity
property, such as being a semi-martingale, being a diffusion, or being Markov. The first part of
this talk is a reworked and corrected version of a talk that I gave in this seminar three years ago.

5.1 Introduction - discrete random walk bridge and Brownian bridges

5.1.1 Discrete random walk bridge

In our first example, we consider a random walk in discrete time and we want to condition the
random walk to arrive at a specified position at a certain time. Our goal is to describe the law of
this conditioned process in a nice way.

Let tXiu
8
i“1 be i.i.d. random variables with ErX1s “ 0 and denote by Sn “

řn
i“0Xi with the

convention that X0 “ 0. Fix some integer N ą 1. Our first goal is going to be to understand what
happens to the distribution of the process Sn for 0 ď n ď N if we condition on the random variable
SN . To do this, we first note that Sn is a martingale in the filtration Fn “ σpXi : 0 ď i ď nq. We
will attempt to write the semi-martingale decomposition of Sn in the filtration Gn “ Fn_σpSN q.

To do this, we will chase the proof of the existence of the semi-martingale decomposition. We
want

• Sn “Mn `An,

• ErMn|Gn´1s “Mn´1,

• ErAn|Gn´1s “ An,

which implies a recursion that yields

Mn “

n
ÿ

k“1

Sk ´ E
“

Sk
ˇ

ˇGk´1

‰

,

An “
n
ÿ

k“1

E
“

Sk
ˇ

ˇGk´1

‰

´ Sk´1.

We take the convention that the empty sum is zero. Notice that since SN and Sk are both Gk
measurable for each k, so SN “ ErSN |Gk´1s. On the other hand, by symmetry for each n,m ě k
we see that ErXn|Gk´1s “ ErXm|Gk´1s. It follows that

SN “ ErSN |Gk´1s “ ErSk´1 `

N
ÿ

n“k

Xn|Gk´1s

“ Sk´1 ` pN ´ k ` 1qErXk|Gk´1s.

Rearranging, we see that for k ď n ď N ,

ErXn|Gk´1s “
SN ´ Sk´1

N ´ pk ´ 1q
.

Consequently, for n ě 1,

Mn “

n
ÿ

k“1

Sk ´ ErSk|Gk´1s “

n
ÿ

k“1

Xk ´ ErXk|Gk´1s
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“

n
ÿ

k“1

Xk ´
SN ´ Sk´1

N ´ pk ´ 1q
“ Sn ´

n
ÿ

k“1

SN ´ Sk´1

N ´ pk ´ 1q

and

An “
n
ÿ

k“1

E
“

Sk
ˇ

ˇGk´1

‰

´ Sk´1 “

n
ÿ

k“1

E rXk|Gk´1s “

n
ÿ

k“1

SN ´ Sk´1

N ´ pk ´ 1q
.

The key here is that we can still identify the martingale part of Sn in its natural filtration even if
we condition on SN .

5.1.2 Brownian bridge

Typically, Brownian bridge is introduced as a ’Brownian motion conditioned on B1 “ 0.’ One
should be wary of this definition at first glance: P pB1 “ 0q “ 0, so it is not entirely trivial to say
what this means. Questions of this type are going to be the main focus of this talk and we will
loosely structure the exposition around the Brownian bridge. Other, more involved, examples will
be interspersed along the way.

Weak limit using the Gaussian structure

One natural way to condition on the event tB1 “ 0u would be to take a limit in some sense of
what we get if we condition tBtutě0 on t|B1| ă εu as ε Ó 0.

Write Bt “ Bt´ tB1` tB1. Since Brownian motion is a Gaussian process, linear combinations
of coordinate projections are jointly normal so we may compute covariances to see that for bptq “
Bt ´ tB1,

tbptqu0ďtď1 and B1

are independent.

Exercise 5.1. Verify that the finite dimensional distributions of tbptqu0ďtď1 and B1 are indepen-
dent (i.e. show that the vector pbpt1q, . . . , bptnqq is independent of B1 for 0 ď t1 ă ¨ ¨ ¨ ă tn ď 1).

Once one knows that bptq and B1 are independent, we can now take weak limits without too
much difficulty.

Exercise 5.2. Let F P CbpCpr0, 1sqq. Show that as εÑ 0

E rF pB¨q||B1| ď εs “ E rF pbp¨q ` ¨B1q||B1| ď εs Ñ E rF pbp¨qqs .

This shows that defining bptq “ Bt ´ tB1 gives a sensible definition of Brownian bridge. Are
there others?

Enlargement of filtration

Let B̃t be standard Brownian motion and consider the process

Xt “ p1´ tq

ż t

0

1

1´ s
dB̃s.

One can check that tXtu0ďtď1 and tBt ´ tB1u0ďtď1 have the same distribution.

Exercise 5.3. (If you have taken stochastic calculus.) Verify that tXtu0ďtď1 has the same distri-
bution as tBt´ tB1u0ďtď1. Hint: Show that tXtu and tBt´ tB1u are Gaussian processes with the
same mean and covariance structure.
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Where did this formula come from? If we want to condition tBtu on tB1 “ 0u, we might
hope to understand what happens to the distribution of the process tBtu if we condition on the
random variable B1 directly and then ‘set B1 “ 0’. Recall that Bt comes equipped with the right
continuous completion of the filtration F t “ σpBs : s ď tq. One way to understand what happens
to Bt if we condition on B1 would be to try to write a stochastic differential equation for Bt in

the right continuous completion of the filtration F pB1q

t “ σpBs : s ď tq _ σpB1q. In both cases, I
am going to abuse notation and refer to both these filtrations and their completions by F t and

F pB1q

t . Define

B̃t “ Bt ´

ż t

0

B1 ´Bs
1´ s

ds.

I claim that B̃t is F pB1q

t Brownian motion. Note that based on Donsker’s theorem, we could have
guessed that this would be Brownian motion based on the semi-martingale decomposition of Sn
in σpXi : i ď nq _ σpSN q above.

If true, then the semi-martingale decomposition of Bt in this filtration is then given by

Bt “ B̃t `

ż t

0

B1 ´Bs
1´ s

ds.

A natural interpretation of Brownian bridge would then be a solution to

dX “ ´
Xt

1´ t
dt` dB̃

which one can compute explicitly to be equal to Xt defined above. As a comment, it follows from
the Markov property and the fact that B̃0 “ 0 that B̃t is independent of B1 for all t.

Last time I gave this part of the talk, I went through the computation showing that B̃t is
Brownian motion. It is a bit tedious and I want to cover other things, so I will give a sketch and
leave the details as an exercise. Observe that for t P r0, 1q

ErBt ´Bs|Fs_σpB1qs “ ErBt ´Bs|Fs_σpB1 ´Bsqs “ ErBt ´Bs|σpB1 ´Bsqs.

Bt ´Bs and B1 ´Bs are jointly normal with mean and covariance matrix given by

µ “

ˆ

0
0

˙

Σ “

ˆ

t´ s t´ s
t´ s 1´ s

˙

so direct computation shows that

ErBt ´Bs|σpB1 ´Bsqs “
t´ s

1´ s
pB1 ´Bsq.

Using the previous comments and applying application the conditional Fubini’s lemma, we have

E
”

B̃t ´ B̃s|F pB1q

t

ı

“ E

„

Bt ´Bs `

ż t

s

B1 ´Bu
1´ u

du|σpB1 ´Bsq



“ 0.

Exercise 5.4. Fill in the details of this argument showing that B̃t is a F pB1q

t martingale. Showing
that this is actually Brownian motion is part of a later exercise.

5.2 Initial enlargement of filtration

The previous example is a bit unfulfilling because it is not clear where the formula for βt came
from. It turns out that this is an example of a general phenomenon.

Let X be a random variable and let F t be the right continuous completion of the filtration
generated by a Brownian motion Bt. Let λtpfq be a continuous version of the process ErfpXq|F ts.
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Since λtpfq is a continuous martingale in a Brownian filtration, it is a theorem that there exists a

stochastic process λ̂tpfq such that

λtpfq “ ErfpXqs `

ż t

0

λ̂spfqdBs

A bit of work shows that there exists a predictable family of measures λtpdxq with the property
that

λtpfq “

ż

fpxqλtpdxq.

We will assume that there exists a predictable family of measures λ̂tpdxq satisfying

λ̂tpdxq “ ρpt, xqλtpdxq, λ̂tpfq “

ż

fpxqλ̂tpdxq (21)

The meaning of this condition will become clear in the examples that follow. With this notation,
we have the following theorem. Note: It is the main result of this note.

Theorem 5.5. [Yor] Suppose that Mt “
şt

0
msdBs is a continuous martingale in the filtration F t

and that X satisfies (21). Then under appropriate integrability conditions, there exists an F pXqt

local martingale M̃t with the property that

Mt “ M̃t `

ż t

0

ρpX, sqmsds

Proof. Let A P Fs and let f be a sufficiently regular test function. Then

E r1AfpXqpMt ´Msqs “ E r1A pλtpfqMt ´ λspfqMsqs

“ E r1A prλpfq,M st ´ rλpfq,M ssqs

where rX,Y s¨ denotes the quadratic variation of X and Y . This follows from an application of
stochastic integration by parts

λtpfqMt ´ λspfqMs “

ż t

s

λupfqdMu `

ż t

s

Mudλupfq ` rλpfq,M st ´ rλpfq,M ss

where we require enough integrability that the first two terms on the right hand side, which are
F t local martingales, are F t martingales. Now, we note that

E r1A prλpfq,M st ´ rλpfq,M ssqs “ E

„

1A

ż t

s

λ̂upfqmudu



“ E

„

1A

ż t

s

ż

ρpX,uqλupdxqmudu



.

The result follows from the observation that

E rfpXqρpX,uq|Fus “
ż

fpxqρpx, uqλupdxq.

Exercise 5.6. In the setting of Theorem 5.5, show that if Mt is F t Brownian Motion, then M̃t

is F pXqt Brownian motion and is independent of X. Hint: Apply Lévy’s critereon and note that

X P F pXq0 .
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5.2.1 Examples

Brownian bridge

In the setting that we started with, let X “ B1, we can use the Markov property to compute

λtpfq “ ErfpB1q|F ts “ ErfpB1q|Bts

“

ż

R
fpxq

1
a

2πp1´ tq
e´

pBt´xq2

2p1´tq dx

In order to compute λ̂tpfq, we can compute

d
1

a

2πp1´ tq
e´

pBt´xq2

2p1´tq “
x´Bt
1´ t

1
a

2πp1´ tq
e´

pBt´xq2

2p1´tq dBt

For this measure, we then see that ρpx, tq “ x´Bt

1´t . We conclude that the semi-martingale decom-

position of Bt in the filtration F pB1q

t is

Bt “ B̃t `

ż t

0

B1 ´Bs
1´ s

ds

where B̃t is F pB1q

t Brownian Motion.

Aside: why is this a natural way to condition?

One might wonder at this point how this method of conditioning fits into the usual framework of
conditioning random variables. We will use the Brownian Bridge as an example.

Take g P Cr0, 1s fixed and let x P R. We consider the ordinary differential equation

fptq “ gptq `

ż t

0

x´ fpsq

1´ s
ds.

Showing that this ODE has a unique solution and that the solution map is nice is left as an
exercise.

Exercise 5.7. Check that if g P Cr0, 1s and x P R then the ordinary integral equation

fptq “ gptq `

ż t

0

x´ fpsq

1´ s
ds,

has at most one solution f P Cr0, 1s. Show that if we define fptq by

fptq “ p1´ tqgp0q ` xt` p1´ tq

ż t

0

1

1´ s
dgpsq,

then f lies in Cr0, 1s, satisfies the ODE, and has fp1q “ x. Define the map

F px, gq “

"

p1´ tqgp0q ` xt` p1´ tq

ż t

0

1

1´ s
dgpsq

*

0ďtď1

.

Find C ą 0 so that }F px, gq ´ F py, hq}Cr0,1s ď C
`

|x´ y| ` }g ´ h}Cr0,1s
˘

.
Hints: To show uniqueness, note that if f1 and f2 are solutions then for t ď T ă 1,

sup
0ďsďt

|f1psq ´ f2ptq| ď
1

1´ T

ż t

0

sup
0ďrďs

|f1prq ´ f2prq|ds.

To show that f solves the ODE, it may help to find a differential equation satisfied by Hptq “
şt

0
fpsq
1´s ds. Note that for t ă 1,

şt

0
1

1´sdgpsq is a Riemann-Stieltjes integral satisfying

ż t

0

1

1´ s
dgpsq “ gptq

1

1´ t
´ gp0q ´

ż t

0

gpsq

p1´ sq2
ds.
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We saw above that there is a σpBs : s ď tq _ σpB1q Brownian motion B̃ so that

Bt “ B̃t `

ż t

0

B1 ´Bs
1´ s

ds.

The previous exercise shows that there is a Borel measurable (Lipschitz continuous) function
F : Cr0, 1sˆRÑ Cr0, 1s so that B “ F pB̃, B1q. It follows that for G P BbpCr0, 1sq and A P σpB1q,

E rGpBq1As “ E
”

Ẽ
”

GpF pB̃, B1qq

ı

1A

ı

where Ẽ is the expectation with respect to the Brownian motion B̃, which is independent of B1.
More generally, this argument will work when we have strong solutions to our stochastic differential
equations, even if the integrals are not Riemann-Stieltjes. Put another way, we have identified the
conditional distribution of the process B given B1 in the usual sense of a conditional expectation.

Stochastic integral with a deterministic integrand

Exercise 5.8. [5] Show that the semimartingale decomposition of Bt in the filtration F p
ş

8

0
e´sdBsq

t

is

Bt “ B̃t `

ż t

0

2e´s
ż 8

s

e´rdBrds

where B̃t is F p
ş

8

0
e´sdBsq

t Brownian motion. Hint:
ş8

t
e´sdBs is normally distributed and indepen-

dent of F t.

A perpetuity, Dufresne identities, and the O’Connell-Yor polymer

This section is based in part on [8, Example 1.8]. Define a functional by

At “

ż t

0

e2Bs´sds

and note that A8 exists almost surely.

Exercise 5.9. Prove that limtÑ8At exists almost surely. Hint: You can use the law of the iterated
logarithm for Bt.

Let f be a smooth test function compactly supported in p0,8q:

λtpfq “ E rfpA8q|F ts

“ E

„

f

ˆ

At ` e
2Bt´t

ż 8

t

e2Bs´2Bt´ps´tqds

˙

|F t


“ E
”

f
´

At ` e
2Bt´tÂ8

¯

|F t
ı

where Â8(which depends on t) is independent of F t. We then see that

λtpfq “ Ê
”

f
´

At ` e
2Bt´tÂ8

¯ı

λ̂tpfq “ Ê
”

2eBt´tÂ8f
1
´

At ` e
2Bt´tÂ8

¯ı

where the expectation Ê is only with respect to Â8. We would like to identify the distribution of
Â8. This will be presented in two ways.
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Hints of Lamperti’s relation: Recall that Gt “ eBt´
1
2 t solves

dGt “ GtdBt

It follows from Dubins-Schwarz that Gt admits a representation as

Gt “ βşt
0
e2Bs´sds “ βAt

where β is Brownian motion. From this coupling, we see that β0 “ 1 and A8 has the same
distribution as inftt ą 0 : βt “ 0u. If you happen to know the distribution of this already, feel free
to jump to the semi-martingale decomposition directly.

Dufresne identity. For each fixed t we have

Zt “ e2Bt´t

ż t

0

e´2Bs`sds “

ż t

0

e2pBt´Bsq`s´tds

“

ż t

0

e2pBt´Bt´uq´udu

d
“

ż t

0

e2Bu´udu “ At

Zt solves the SDE

dZt “ p1` Ztq dt` 2ZtdBt

In particular, Zt is Markov. The limit At Ñ A8 holds almost surely and therefore in distribution,
so Zt converges in distribution as tÑ8 to A8. It will be helpful to know that this SDE is ergodic
on R`. The next exercise provides a proof of this.

Exercise 5.10. Check that the solution to the SDE

dZt “ p1` Ztq dt` 2ZtdBt

Z0 “ x

is given by

Zt “ xe2Bt´t ` e2Bt´t

ż t

0

e´2Bs`sds

Conclude that Zt has exactly one stationary distribution, given by the distribution of A8. Note
that this distribution is supported on R`. (Hint: xe2Bt´t Ñ 0 a.s. and we have shown that

e2Bt´t
şt

0
e´2Bs`sds converges in distribution)

To compute the stationary distribution for Zt, we recall that its generator L is given by

L “ 2x2 d
2

dx2
` p1` xq

d

dx

Exercise 5.11. Verify that ρpxq “ x´
3
2 e´

1
2x 1txą0u is a non-negative and integrable solution to

2
d2

dx2

“

x2ρpxq
‰

´
d

dx
rxρpxq ` ρpxqs “ 0.

Show that for all ϕ P C8c pR`q,
ż

R`
ρpxqLϕpxqdx “ 0

and conclude that the distribution of A8 is given by Cx´
3
2 e´

1
2x 1txą0u for some C.
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In other words, A8 has an inverse gamma distribution with parameters p 1
2 ,

1
2 q. Put yet another

way, if Y has density proportional to y´
1
2 e´y1tyą0u (that is, a gamma distribution with parameter

1
2 ), then A8 has the same distribution as 1

2Y .
Semi-martingale decomposition. Now that we have this distribution, we can compute the
semi-martingale decomposition of Bt in the filtration FA8t

λpfq “ C

ż 8

0

fpAt ` e
2Bt´txqx´

3
2 e

1
2x dx

λ̂pfq “ C

ż 8

0

2e2Bt´txf 1pAt ` e
2Bt´txqx´

3
2 e´

1
2x dx

“ 2Ce2Bt´t

ż 8

0

f 1pAt ` e
2Bt´txqx

´1
2 e´

1
2x dx

“ C

ż 8

0

fpAt ` e
2Bt´txq

ˆ

1´
1

x

˙

x´
3
2 e

´1
2x dx.

Changing variables in both expressions, y “ At ` e
2Bt´tx, x “ et´2Btpy ´Atq and et´2Btdy “ dx

gives

ρpx, tq “ 1´
e2Bt´t

x´At
.

It follows that

Bt “ B̃t ` t´

ż t

0

e2Bs´s

A8 ´As
ds (22)

where B̃t is FA8t Brownian motion and therefore is independent of A8. It is convenient to rewrite
this as

Bt ´
t

2
“ B̃t `

t

2
´

ż t

0

e2Bs´s

A8 ´As
ds

A process level identity
This section is based on [9, 11]. Note that pointwise (22) is of the form

fptq “ gptq `

ż t

0

eαfpsqϕ

ˆ
ż s

0

eαfpsq
˙

ds,

where fptq “ Bt ´
t
2 , gptq “ B̃t `

t
2 , α “ 2, and ϕpxq “ 1

x´A8
. As above, for nice f, g, ϕ this is a

solvable ordinary differential equation with a unique solution [9, Appendix]. We find that

Bt ´
t

2
“ B̃t `

t

2
´ log

ˆ

1`A´1
8

ż t

0

e2B̃s`sds

˙

.

This result is particularly interesting read backwards. Given a random variable γ with inverse
Gamma p 1

2 ,
1
2 q distribution which is independent of a Brownian motion Bt,

Bt ` t` logpγq ´ log

ˆ

γ `

ż t

0

e2Bs`sds

˙

is standard Brownian motion. Now, suppose that we have a two-sided Brownian motion Bt and
recall that σpBs : s ď 0q is independent of σpBs : s ě 0q. We now see that

Bt ` t` log

ż 0

´8

e2Bs`sds´ log

ż t

´8

e2Bs`sds
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is Brownian motion and independent of
ş0

´8
e2Bs`sds. Hence if we define B̂ by

B̂t “ ´Bt ´ t` log

ż t

´8

e2Bs`sds´ log

ż 0

´8

e2Bs`sds

“ Bt ` log

ż 0

´8

e2Bs`sds` log

ż t

´8

e2pBs´Btq`s´tds

then B̂ is Brownian motion. It will be convenient to have this identity in the form

B̂t `
t

2
“ ´Bt ´

t

2
` log

ż t

´8

e2Bs`sds´ log

ż 0

´8

e2Bs`sds

Define a functional by

αt “ log

ż t

´8

e2pBt´Bsq´pt´sqds “ ´2Bt ´ t` log

ˆ

eα0 `

ż t

0

e´2Bs`sds

˙

With this definition, we see that

B̂t “ Bt ` αt ´ α0

Perhaps surprisingly, we can also show that tB̂s : 0 ď s ď tu is independent of tαs : s ě tu. This
follows from the fact that

αt “ log

ż 8

t

e2pB̂t´B̂sq`t´sds

This can be proven with a little calculus. To see this, set

Qt “

ż t

´8

e2Bs`sds

and notice that

αt “ log

ż t

´8

e2pBs´Btq´t`sds “ ´2Bt ´ t` logQt

2B̂t ` t “ ´2Bt ´ t` 2 logQt ´ 2 logQ0

Recall that
ż

sět

e2pB̂t´B̂sq`t´sds “ e2B̂t`t

ż

sět

e´2B̂s´sds

“ e´2Bt´tQ2
t

ż

sět

Q´2
s e2Bs`sds.

Notice that

d

dt
Q´1
t “ ´Q´2

t e2Bs´s.

Consequently

ż

sět

e2pB̂t´B̂sq`t´sds “ e´2Bt´tQ2
tQ

´1
t

“ e´2Bt´t`logQt “ eαt .
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5.3 Key words

1. Initial enlargement of filtration

2. Brownian bridge

3. Dufresne identities
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