AMS Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(239 intermediate revisions by 27 users not shown)
Line 1: Line 1:
The AMS Student Chapter Seminar is an informal, graduate student-run seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.
The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.


* '''When:''' Wednesdays, 3:30 PM – 4:00 PM
* '''When:''' Wednesdays, 3:20 PM – 3:50 PM
* '''Where:''' Van Vleck, B115
* '''Where:''' Van Vleck, 9th floor lounge (unless otherwise announced)
* '''Organizers:''' Daniel Hast, Ryan Julian, Cullen McDonald, Zachary Charles
* '''Organizers:''' [https://www.math.wisc.edu/~malexis/ Michel Alexis], [https://www.math.wisc.edu/~drwagner/ David Wagner], [http://www.math.wisc.edu/~nicodemus/ Patrick Nicodemus], [http://www.math.wisc.edu/~thaison/ Son Tu], Carrie Chen


Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 30 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.
Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.


== Fall 2016 ==
The schedule of talks from past semesters can be found [[AMS Student Chapter Seminar, previous semesters|here]].


=== October 12, Soumya Sankar ===
== Spring 2020 ==


Title: Primes of certain forms and covering systems
=== February 5, Alex Mine===


Abstract: A lot of classical questions revolve around primes of the form 2^n + k, where k is an odd integer. I will talk about such primes, or the lack thereof, and use this to convert coffee into covering systems. Time permitting, I'll talk about a few cool results and conjectures related to the notion of covering systems.
Title: Khinchin's Constant


=== October 19, Daniel Hast ===
Abstract: I'll talk about a really weird fact about continued fractions.


Title: A combinatorial lemma in linear algebra
=== February 12, Xiao Shen===


Abstract: I'll talk about a fun little lemma in linear algebra and its combinatorial interpretation. (It might be "well-known" to someone, but I'd never heard of it before.) If there's time, I'll discuss some possible generalizations.
Title: Coalescence estimates for the corner growth model with exponential weights


=== October 26, Vlad Matei ===
Abstract: (Joint with Timo Seppalainen) I will talk about estimates for the coalescence time of semi-infinite directed geodesics in the planar corner growth model. Not much probability background is needed.


Title: TBA
=== February 19, Hyun Jong Kim===


Abstract: TBA
Title: Orbifolds for Music


=== November 2, TBA ===
Abstract: In the first-ever music theory article published by the journal ''Science'', Dmitri Tymoczko uses orbifolds to describe a general framework for thinking about musical tonality. I am going to introduce the musical terms and ideas needed to describe how such orbifolds arise so that we can see an example of Tymoczko's geometric analysis of chord progressions.


=== November 9, TBA ===
=== February 26, Solly Parenti===


=== November 16, TBA ===
Title: TBD


=== November 30, TBA ===
Abstract: TBD


=== December 7, TBA ===
=== March 4, ===


=== December 14, TBA ===
Title: TBD


== Spring 2016 ==
Abstract: TBD


=== January 27, Wanlin Li ===
=== March 11, Ivan Aidun===


Title: The Nottingham group
Title: TBD


Abstract: It's the group of wild automorphisms of the local field F_q((t)). It's a finitely generated pro-p group. It's hereditarily just infinite. Every finite p-group can be embedded in it.  It's a favorite test case for conjectures concerning pro-p groups.  It's the Nottingham group! I will introduce you to this nice pro-p group which is loved by group theorists and number theorists.
Abstract: TBD


=== February 3, Will Cocke ===
=== March 24 - Visit Day===


Title: Who or What is the First Order & Why Should I Care?
==== Brandon Boggess, Time TBD====


Abstract: As noted in recent films, the First Order is very powerful. We will discuss automated theorem proving software, including what exactly that means. We will then demonstrate some theorems, including previously unknown results, whose proofs can be mined from your computer.
Title: TBD


=== February 10, Jason Steinberg ===
Abstract: TBD


Title: Mazur's Swindle
==== Yandi Wu, Time TBD====


Abstract: If we sum the series 1-1+1-1+1-1+... in two ways, we get the nonsensical result 0=1 as follows: 0=(1-1)+(1-1)+(1-1)+...=1+(-1+1)+(-1+1)+...=1. While the argument is invalid in the context of adding infinitely many numbers together, there are other contexts throughout mathematics when it makes sense to take arbitrary infinite "sums" of objects in a way that these sums satisfy an infinite form of associativity. In such contexts, the above argument is valid. Examples of such contexts are connected sums of manifolds, disjoint unions of sets, and direct sums of modules, and in each case we can use this kind of argument to achieve nontrivial results fairly easily. Almost too easily...
Title: TBD


=== February 17, Zachary Charles ===
Abstract: TBD


Title: #P and Me: A tale of permanent complexity
==== TBD, Time TBD====


Abstract: The permanent is the neglected younger sibling of the determinant. We will discuss the permanent, its properties, and its applications in graph theory and commutative algebra. We will then talk about computational complexity classes and why the permanent lies at a very strange place in the complexity hierarchy. If time permits, we will discuss operations with even sillier names, such as the immanant.
Title: TBD


=== February 24, Brandon Alberts ===
Abstract: TBD


Title: The Rado Graph
==== TBD, Time TBD====


Abstract: A graph so unique, that a countably infinite random graph is isomorphic to the Rado Graph with probability 1. This talk will define the Rado Graph and walk through a proof of this surprising property.
Title: TBD


=== March 2, Vlad Matei ===
Abstract: TBD


Title: Pythagoras numbers of fields
==== TBD, Time TBD====


Abstract: The Pythagoras number of a field describes the structure of the set of squares in the field. The Pythagoras number p(K) of a field K is the smallest positive integer p such that every sum of squares in K is a sum of p squares.
Title: TBD


A pythagorean field is one with Pythagoras number 1: that is, every sum of squares is already a square.
Abstract: TBD


These fields have been studied for over a century and it all started with David Hilbert and his famous 17th problem and whether or not positive polynomial function on '''R'''^n can be written as a finite sum of squares of polynomial functions.
==== TBD, Time TBD====


We explore the history and various results and some unanswered questions.
Title: TBD


=== March 9, Micky Steinberg ===
Abstract: TBD


Title: The Parallel Postulate and Non-Euclidean Geometry.
==== TBD, Time TBD====


Abstract:
Title: TBD
“Is Euclidean Geometry true? It has no meaning. We might as well ask if the metric system is true and if the old weights and measures are false; if Cartesian coordinates are true and polar coordinates false. One geometry cannot be more true than another: it can only be more convenient.” -Poincaré


Euclid’s Fifth Postulate is logically equivalent to the statement that there exists a unique line through a given point which is parallel to a given line. For 2000 years, mathematicians were sure that this was in fact a theorem which followed from his first four axioms. In attempts to prove the postulate by contradiction, three mathematicians accidentally invented a new geometry...
Abstract: TBD


=== March 16, Keith Rush ===
==== TBD, Time TBD====


Title: Fourier series, random series and Brownian motion--the beginnings of modern analysis and probability
Title: TBD


Abstract: A mostly historical and (trust me!) non-technical talk on the development of analysis and probability through the interplay between a few fundamental, well-known objects: namely Fourier, random and Taylor series, and the Brownian Motion. In my opinion this is a beautiful and interesting perspective that deserves to be better known. DISCLAIMER: I'll need to end at least 5 minutes early because I'm giving the grad analysis talk at 4.
Abstract: TBD


=== March 30, Iván Ongay Valverde ===
==== TBD, Time TBD====


Title: Monstrosities out of measure
Title: TBD


Abstract: It is a well known result that, using the Lebesgue measure, not all subsets of the real line are measurable. To get this result we use the property of invariance under translation and the axiom of choice. Is this still the case if we remove the invariance over translation? Depending how we answer this question the properties of the universe itself can change.
Abstract: TBD


=== April 6, Nathan Clement ===
=== April 1, Ying Li===


Title: Algebraic Doughnuts
Title: TBD


Abstract: A fun, elementary problem with a snappy solution from Algebraic Geometry. The only prerequisite for this talk is a basic knowledge of circles!
Abstract: TBD


=== April 13, Adam Frees ===
=== April 8, TBD===


Title: The proof is in the 'puting: the mathematics of quantum computing
Title: TBD


Abstract: First proposed in the 1980s, quantum computing has since been shown to have a wide variety of practical applications, from finding molecular energies to breaking encryption schemes. In this talk, I will give an introduction to quantum mechanics, describe the basic building blocks of a quantum computer, and (time permitting) demonstrate a quantum algorithm. No prior physics knowledge required!
Abstract: TBD


=== April 20, Eva Elduque ===
=== April 15, Owen Goff===


Title: The Cayley-Hamilton Theorem
Title: TBD


Abstract: The Cayley-Hamilton Theorem states that every square matrix with entries in a commutative ring is a root of its characteristic polynomial. We all have used this theorem many times but might have never seen a proof of it. In this talk I will give a slick proof of this result that uses density and continuity so as to prevent the non-algebraists in the room from rioting.
Abstract: TBD


=== April 27, David Bruce ===
=== April 22, TBD===


Title: A Crazy Way to Define Homology
Title: TBD


Abstract: This talk will be like a costume party!! However, instead of pretending to be an astronaut I will pretend to be a topologist, and try and say something about the Dold-Thom theorem, which gives a connected between the homotopy groups and homology groups of connected CW complexes. So I guess this talk will be nothing like a costume party, but feel free to wear a costume if you want.
Abstract: TBD


=== May 4, Paul Tveite ===
== Fall 2019 ==


Title: Kissing Numbers (not the fun kind)
=== October 9, Brandon Boggess===


Abstract: In sphere packing, the n-dimensional kissing number is the maximal number of non-intersecting radius 1 n-spheres that can all simultaneously be tangent to a central, radius 1 n-sphere. We'll talk a little bit about the known solutions and some of the interesting properties that this problem has.
Title: An Application of Elliptic Curves to the Theory of Internet Memes


=== May 11, Becky Eastham ===
Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!


Title: Logic is Useful for Things, Such as Ramsey Theory
[[File:Thumbnail fruit meme.png]]


Abstract: Hindman’s Theorem, first proven in 1974, states that every finite coloring of the positive integers contains a monochromatic IP set (a set of positive integers which contains all finite sums of distinct elements of some infinite set).  The original proof was long, complicated, and combinatorial.  However, there’s a much simpler proof of the theorem using ultrafilters.  I’ll tell you what an ultrafilter is, and then I will, in just half an hour, prove Hindman’s Theorem by showing the existence of an idempotent ultrafilter.
=== October 16, Jiaxin Jin===


== Fall 2015 ==
Title: Persistence and global stability for biochemical reaction-diffusion systems


=== October 7, Eric Ramos ===
Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.


Title: Configuration Spaces of Graphs
=== October 23, Erika Pirnes===


Abstract: A configuration of n points on a graph is just a choice of n distinct points. The set of all such configurations is a topological space, and so one can study its properties. Unsurprisingly, one can determine a lot of information about this configuration space from combinatorial data of the graph. In this talk, we consider some of the most basic properties of these spaces, and discuss how they can be applied to things like robotics. Note that most of the talk will amount to drawing pictures until everyone agrees a statement is true.
(special edition: carrot seminar)


=== October 14, Moisés Herradón ===
Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)


Title: The natural numbers form a field
Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.


Abstract: But of course, you already knew that they form a field: you just have to biject them into Q and then use the sum and product from the rational numbers. However, out of the many field structures the natural numbers can have, the one I’ll talk about is for sure the cutest. I will discuss how this field shows up in "nature" (i.e. in the games of some fellows of infinite jest) and what cute properties it has.
=== October 30, Yunbai Cao===


=== October 21, David Bruce ===
Title: Kinetic theory in bounded domains


Title: Coverings, Dynamics, and Kneading Sequences
Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.


Abstract: Given a continuous map f:X—>X of topological spaces and a point x in X one can consider the set {x, f(x), f(f(x)), f(f(f(x))),…} i.e, the orbit of x under the map f. The study of such things even in simple cases, for example when X is the complex numbers and f is a (quadratic) polynomial, turns out to be quite complex (pun sort of intended). (It also gives rise to main source of pretty pictures mathematicians put on posters.) In this talk I want to show how the study of such orbits is related to the following question: How can one tell if a (ramified) covering of S^2 comes from a rational function? No background will be assumed and there will be pretty pictures to stare at.
=== November 6, Tung Nguyen===


=== October 28, Paul Tveite ===
Title: Introduction to Chemical Reaction Network


Title: Gödel Incompleteness, Goodstein's Theorem, and the Hydra Game
Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.


Abstract: Gödel incompleteness states, roughly, that there are statements about the natural numbers that are true, but cannot be proved using just Peano Arithmetic. I will give a couple concrete examples of such statements, and prove them in higher mathematics.
=== November 13, Jane Davis===


=== November 4, Wanlin Li ===
Title: Brownian Minions


Title: Expander Families, Ramanujan graphs, and Property tau
Abstract: Having lots of small minions help you perform a task is often very effective. For example, if you need to grade a large stack of calculus problems, it is effective to have several TAs grade parts of the pile for you. We'll talk about how we can use random motions as minions to help us perform mathematical tasks. Typically, this mathematical task would be optimization, but we'll reframe a little bit and focus on art and beauty instead. We'll also try to talk about the so-called "storytelling metric," which is relevant here. There will be pictures and animations! 🎉


Abstract: Expander family is an interesting topic in graph theory. I will define it, give non-examples and talk about the ideal kind of it, i.e. Ramanujan graph. Also, I will talk about property tau of a group and how it is related to expander families. To make the talk not full of definitions, here are part of the things I'm not going to define: Graph, regular graph, Bipartite graph, Adjacency matrix of a graph and tea...
Sneak preview: some modern art generated with MATLAB.


=== November 11, Daniel Hast ===
[[File:Picpic.jpg]]


Title: Scissor groups of polyhedra and Hilbert's third problem
=== November 20, Colin Crowley===


Abstract: Given two polytopes of equal measure (area, volume, etc.), can the first be cut into finitely many polytopic pieces and reassembled into the second? To investigate this question, we will introduce the notion of a "scissor group" and compute the scissor group of polygons. We will also discuss the polyhedral case and how it relates to Dehn's solution to Hilbert's third problem. If there is time, we may mention some fancier examples of scissor groups.
Title: Matroid Bingo


=== November 18, James Waddington ===
Abstract: Matroids are combinatorial objects that generalize graphs and matrices. The famous combinatorialist Gian Carlo Rota once said that "anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day." Although his day was in the 60s and 70s, matroids remain an active area of current research with connections to areas such as algebraic geometry, tropical geometry, and parts of computer science. Since this is a doughnut talk, I will introduce matroids in a cute way that involves playing bingo, and then I'll show you some cool examples.


''Note: This week's talk will be from 3:15 to 3:45 instead of the usual time.''
=== December 4, Xiaocheng Li===


Title: Euler Spoilers
Title: The method of stationary phase and Duistermaat-Heckman formula


Abstract: Leonhard Euler is often cited as one of the greatest mathematicians of the 18. Century. His solution to the Königsburg Bridge problem is an important result of early topology. Euler also did work in combinatorics and in number theory. Often his methods tended to be computational in nature (he was a computer in the traditional sense) and from these he proposed many conjectures, a few of which turned out to be wrong. Two failed conjectures of Euler will be presented.
Abstract: The oscillatory integral $\int_X e^{itf(x)}\mu=:I(t), t\in \mathbb{R}$ is a fundamental object in analysis. In general, $I(t)$ seldom has an explicit expression as Fourier transform is usually inexplicit. In practice, we are interested in the asymptotic behavior of $I(t)$, that is, for $|t|$ very large. A classical tool of getting an approximation is the method of stationary phase which gives the leading term of $I(t)$. Furthermore, there are rare instances for which the approximation coincides with the exact value of $I(t)$. One example is the Duistermaat-Heckman formula in which the Hamiltonian action and the momentum map are addressed. In the talk, I will start with basic facts in Fourier analysis, then discuss the method of stationary phase and the Duistermaat-Heckman formula.


=== December 9, Brandon Alberts ===
=== December 11, Chaojie Yuan===


Title: The field with one element
Title: Coupling and its application in stochastic chemical reaction network


=== December 16, Micky Soule Steinberg ===
Abstract: Stochastic models for chemical reaction networks have become increasingly popular in the past few decades. When the molecules are present in low numbers, the chemical system always displays randomness in their dynamics, and the randomness cannot be ignored as it can have a significant effect on the overall properties of the dynamics. In this talk, I will introduce the stochastic models utilized in the context of biological interaction network. Then I will discuss coupling in this context, and illustrate through examples how coupling methods can be utilized for numerical simulations. Specifically, I will introduce two biological models, which attempts to address the behavior of interesting real-world phenomenon.
 
Title: Intersective polynomials
 
==Spring 2015==
 
===January 28, Moisés Herradón===
 
Title: Winning games and taking names
 
Abstract: So let’s say we’re already amazing at playing one game (any game!) at a time and we now we need to play several games at once, to keep it challenging. We will see that doing this results in us being able to define an addition on the collection of all games, and that it actually turns this collection into a Group. I will talk about some of the wonders that lie within the group. Maybe lions? Maybe a field containing both the real numbers and the ordinals? For sure it has to be one of these two!
 
===February 11, Becky Eastham===
 
Title: A generalization of van der Waerden numbers: (a, b) triples and (a_1, a_2, ..., a_n) (n + 1)-tuples
 
Abstract: Van der Waerden defined w(k; r) to be the least positive integer such that for every r-coloring of the integers from 1 to w(k; r), there is a monochromatic arithmetic progression of length k.  He proved that w(k; r) exists for all positive k, r.  I will discuss the case where r = 2. These numbers are notoriously hard to calculate: the first 6 of these are 1, 3, 9, 35, 178, and 1132, but no others are known.  I will discuss properties of a generalization of these numbers, (a_1, a_2, ..., a_n) (n + 1)-tuples, which are sets of the form {d, a_1x + d, a_2x + 2d, ..., a_nx + nd}, for d, x positive natural numbers.
 
===February 18, Solly Parenti===
 
Title: Chebyshev's Bias
 
Abstract: Euclid told us that there are infinitely many primes.  Dirichlet answered the question of how primes are distributed among residue classes.  This talk addresses the question of "Ya, but really, how are the primes distributed among residue classes?"  Chebyshev noted in 1853 that there seems to be more primes congruent to 3 mod 4 than their are primes congruent to 1 mod 4.  It turns out, he was right, wrong, and everything in between.  No analytic number theory is presumed for this talk, as none is known by the speaker.
 
===February 25, David Bruce===
 
Title: Mean, Median, and Mode - Well Actually Just Median
 
Abstract: Given a finite set of numbers there are many different ways to measure the center of the set. Three of the more common measures, familiar to any middle school students, are: mean, median, mode. This talk will focus on the concept of the median, and why in many ways it's sweet. In particular, we will explore how we can extend the notion of a median to higher dimensions, and apply it to create more robust statistics. It will be awesome, and there will be donuts.
 
===March 4, Jing Hao===
 
Title: Error Correction Codes
 
Abstract: In the modern world, many communication channels are subject to noise, and thus errors happen. To help the codes auto-correct themselves, more bits are added to the codes to make them more different from each other and therefore easier to tell apart. The major object we study is linear codes. They have nice algebraic structure embedded, and we can apply well-known algebraic results to construct 'nice' codes. This talk will touch on the basics of coding theory, and introduce some famous codes in the coding world, including several prize problems yet to be solved!
 
===March 10 (Tuesday), Nathan Clement===
 
''Note: This week's seminar will be on Tuesday at 3:30 instead of the usual time.''
 
Title: Two Solutions, not too Technical, to a Problem to which the Answer is Two
 
Abstract: A classical problem in Algebraic Geometry is this: Given four pairwise skew lines, how many other lines intersect all of them. I will present some (two) solutions to this problem. One is more classical and ad hoc and the other introduces the Grassmannian variety/manifold and a little intersection theory.
 
===March 25, Eric Ramos===
 
Title: Braids, Knots and Representations
 
Abstract: In the 1920's Artin defined the braid group, B_n, in an attempt to understand knots in a more algebraic setting. A braid is a certain arrangement of strings in three-dimensional space. It is a celebrated theorem of Alexander that every knot is obtainable from a braid by identifying the endpoints of each string. Because of this correspondence, the Jones and Alexander polynomials, two of the most important knot invariants, can be described completely using the braid group. In fact, Jones was able to show that knot invariants can often be realized as characters of special representations of the braid group.
 
The purpose of this talk is to give a very light introduction to braid and knot theory. The majority of the talk will be comprised of drawing pictures, and nothing will be treated rigorously.
 
===April 8, James Waddington===
 
Title: Goodstein's Theorem
 
Abstract: One of the most important results in the development of mathematics are
Gödel's Incompleteness theorems. The first incompleteness theorem shows that no
list of axioms one could provide could extend number theory to a complete and
consistent theory. The second showed that one such statement was no
axiomatization of number theory could be used to prove its own consistency.
Needless to say this was not viewed as a very natural independent statement
from arithmetic.
 
Examples of non-metamathematical results that were independent of PA, but true
of second order number theory, were not discovered until much later. Within a
short time of each three such statements that were more "natural" were
discovered. The Paris–Harrington Theorem, which was about a statement in Ramsey
theory, the Kirby–Paris theorem, which showed the independence of Goodstein's
theorem from Peano Arithmetic and the Kruskal's tree theorem, a statement about
finite trees.
 
In this talk I shall discuss Goodstein's theorem which discusses the end
behavior of a certain "Zero player" game about k-nary expansions of numbers.
I will also give some elements of the proof of the Kirby–Paris theorem.
 
===April 22, William Cocke===
 
Title: Finite Groups aren't too Square
 
Abstract: We investigate how many non-p-th powers a group can have for a given prime p.
We will show using some elementary group theory, that if np(G) is the number of non-p-th powers
in a group G, then G has order bounded by np(G)(np(G)+1). Time permitting we will show this bound
is strict and that mentioned results involving more than finite groups.
 
==Fall 2014==
 
===September 25, Vladimir Sotirov===
 
Title: [[Media:Compact-openTalk.pdf|The compact open topology: what is it really?]]
 
Abstract:  The compact-open topology on the space C(X,Y) of continuous functions from X to Y is mysteriously generated by declaring that for each compact subset K of X and each open subset V of Y, the continous functions f: X->Y conducting K inside V constitute an open set. In this talk, I will explain the universal property that uniquely determines the compact-open topology, and sketch a pretty constellation of little-known but elementary facts from domain theory that dispell the mystery of the compact-open topology's definition.
 
===October 8, David Bruce===
 
Title: Hex on the Beach
 
Abstract: The game of Hex is a two player game played on a hexagonal grid attributed in part to John Nash. (This is the game he is playing in /A Beautiful Mind./) Despite being relatively easy to pick up, and pretty hard to master, this game has surprising connections to some interesting mathematics. This talk will introduce the game of Hex, and then explore some of these connections. *As it is a lot more fun once you've actually played Hex feel free to join me at 3:00pm on the 9th floor to actually play a few games of Hex!*
 
===October 22, Eva Elduque===
 
Title: The fold and one cut problem
 
Abstract: What shapes can we get by folding flat a piece of paper and making (only) one complete straight cut? The answer is surprising: We can cut out any shape drawn with straight line segments. In the talk, we will discuss the two methods of approaching this problem, focusing on the straight skeleton method, the most intuitive of the two.
 
===November 5, Megan Maguire===
 
Title: Train tracks on surfaces
 
Abstract: What is a train track, mathematically speaking? Are they interesting? Why are they interesting? Come find out!
 
===November 19, Adrian Tovar-Lopez===
 
Title:  Hodgkin and Huxley equations of a single neuron
 
===December 3, Zachary Charles===
 
Title:  Addition chains: To exponentiation and beyond
 
Abstract: An addition chain is a sequence of numbers starting at one, such that every number is the sum of two previous numbers. What is the shortest chain ending at a number n? While this is already difficult, we will talk about how addition chains answer life's difficult questions, including: How do we compute 2^4? What can the Ancient Egyptians teach us about elliptic curve cryptography? What about subtraction?

Revision as of 20:03, 18 February 2020

The AMS Student Chapter Seminar (aka Donut Seminar) is an informal, graduate student seminar on a wide range of mathematical topics. Pastries (usually donuts) will be provided.

Everyone is welcome to give a talk. To sign up, please contact one of the organizers with a title and abstract. Talks are 25 minutes long and should avoid assuming significant mathematical background beyond first-year graduate courses.

The schedule of talks from past semesters can be found here.

Spring 2020

February 5, Alex Mine

Title: Khinchin's Constant

Abstract: I'll talk about a really weird fact about continued fractions.

February 12, Xiao Shen

Title: Coalescence estimates for the corner growth model with exponential weights

Abstract: (Joint with Timo Seppalainen) I will talk about estimates for the coalescence time of semi-infinite directed geodesics in the planar corner growth model. Not much probability background is needed.

February 19, Hyun Jong Kim

Title: Orbifolds for Music

Abstract: In the first-ever music theory article published by the journal Science, Dmitri Tymoczko uses orbifolds to describe a general framework for thinking about musical tonality. I am going to introduce the musical terms and ideas needed to describe how such orbifolds arise so that we can see an example of Tymoczko's geometric analysis of chord progressions.

February 26, Solly Parenti

Title: TBD

Abstract: TBD

March 4,

Title: TBD

Abstract: TBD

March 11, Ivan Aidun

Title: TBD

Abstract: TBD

March 24 - Visit Day

Brandon Boggess, Time TBD

Title: TBD

Abstract: TBD

Yandi Wu, Time TBD

Title: TBD

Abstract: TBD

TBD, Time TBD

Title: TBD

Abstract: TBD

TBD, Time TBD

Title: TBD

Abstract: TBD

TBD, Time TBD

Title: TBD

Abstract: TBD

TBD, Time TBD

Title: TBD

Abstract: TBD

TBD, Time TBD

Title: TBD

Abstract: TBD

TBD, Time TBD

Title: TBD

Abstract: TBD

TBD, Time TBD

Title: TBD

Abstract: TBD

April 1, Ying Li

Title: TBD

Abstract: TBD

April 8, TBD

Title: TBD

Abstract: TBD

April 15, Owen Goff

Title: TBD

Abstract: TBD

April 22, TBD

Title: TBD

Abstract: TBD

Fall 2019

October 9, Brandon Boggess

Title: An Application of Elliptic Curves to the Theory of Internet Memes

Abstract: Solve polynomial equations with this one weird trick! Math teachers hate him!!!

Thumbnail fruit meme.png

October 16, Jiaxin Jin

Title: Persistence and global stability for biochemical reaction-diffusion systems

Abstract: The investigation of the dynamics of solutions of nonlinear reaction-diffusion PDE systems generated by biochemical networks is a great challenge; in general, even the existence of classical solutions is difficult to establish. On the other hand, these kinds of problems appear very often in biological applications, e.g., when trying to understand the role of spatial inhomogeneities in living cells. We discuss the persistence and global stability properties of special classes of such systems, under additional assumptions such as: low number of species, complex balance or weak reversibility.

October 23, Erika Pirnes

(special edition: carrot seminar)

Title: Why do ice hockey players fall in love with mathematicians? (Behavior of certain number string sequences)

Abstract: Starting with some string of digits 0-9, add the adjacent numbers pairwise to obtain a new string. Whenever the sum is 10 or greater, separate its digits. For example, 26621 would become 81283 and then 931011. Repeating this process with different inputs gives varying behavior. In some cases the process terminates (becomes a single digit), or ends up in a loop, like 999, 1818, 999... The length of the strings can also start growing very fast. I'll discuss some data and conjectures about classifying the behavior.

October 30, Yunbai Cao

Title: Kinetic theory in bounded domains

Abstract: In 1900, David Hilbert outlined 23 important problems in the International Congress of Mathematics. One of them is the Hilbert's sixth problem which asks the mathematical linkage between the mechanics from microscopic view and the macroscopic view. A relative new mesoscopic point of view at that time which is "kinetic theory" was highlighted by Hilbert as the bridge to link the two. In this talk, I will talk about the history and basic elements of kinetic theory and Boltzmann equation, and the role boundary plays for such a system, as well as briefly mention some recent progress.

November 6, Tung Nguyen

Title: Introduction to Chemical Reaction Network

Abstract: Reaction network models are often used to investigate the dynamics of different species from various branches of chemistry, biology and ecology. The study of reaction network has grown significantly and involves a wide range of mathematics and applications. In this talk, I aim to show a big picture of what is happening in reaction network theory. I will first introduce the basic dynamical models for reaction network: the deterministic and stochastic models. Then, I will mention some big questions of interest, and the mathematical tools that are used by people in the field. Finally, I will make connection between reaction network and other branches of mathematics such as PDE, control theory, and random graph theory.

November 13, Jane Davis

Title: Brownian Minions

Abstract: Having lots of small minions help you perform a task is often very effective. For example, if you need to grade a large stack of calculus problems, it is effective to have several TAs grade parts of the pile for you. We'll talk about how we can use random motions as minions to help us perform mathematical tasks. Typically, this mathematical task would be optimization, but we'll reframe a little bit and focus on art and beauty instead. We'll also try to talk about the so-called "storytelling metric," which is relevant here. There will be pictures and animations! 🎉

Sneak preview: some modern art generated with MATLAB.

Picpic.jpg

November 20, Colin Crowley

Title: Matroid Bingo

Abstract: Matroids are combinatorial objects that generalize graphs and matrices. The famous combinatorialist Gian Carlo Rota once said that "anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day." Although his day was in the 60s and 70s, matroids remain an active area of current research with connections to areas such as algebraic geometry, tropical geometry, and parts of computer science. Since this is a doughnut talk, I will introduce matroids in a cute way that involves playing bingo, and then I'll show you some cool examples.

December 4, Xiaocheng Li

Title: The method of stationary phase and Duistermaat-Heckman formula

Abstract: The oscillatory integral $\int_X e^{itf(x)}\mu=:I(t), t\in \mathbb{R}$ is a fundamental object in analysis. In general, $I(t)$ seldom has an explicit expression as Fourier transform is usually inexplicit. In practice, we are interested in the asymptotic behavior of $I(t)$, that is, for $|t|$ very large. A classical tool of getting an approximation is the method of stationary phase which gives the leading term of $I(t)$. Furthermore, there are rare instances for which the approximation coincides with the exact value of $I(t)$. One example is the Duistermaat-Heckman formula in which the Hamiltonian action and the momentum map are addressed. In the talk, I will start with basic facts in Fourier analysis, then discuss the method of stationary phase and the Duistermaat-Heckman formula.

December 11, Chaojie Yuan

Title: Coupling and its application in stochastic chemical reaction network

Abstract: Stochastic models for chemical reaction networks have become increasingly popular in the past few decades. When the molecules are present in low numbers, the chemical system always displays randomness in their dynamics, and the randomness cannot be ignored as it can have a significant effect on the overall properties of the dynamics. In this talk, I will introduce the stochastic models utilized in the context of biological interaction network. Then I will discuss coupling in this context, and illustrate through examples how coupling methods can be utilized for numerical simulations. Specifically, I will introduce two biological models, which attempts to address the behavior of interesting real-world phenomenon.