Difference between revisions of "Algebra and Algebraic Geometry Seminar Spring 2018"

From Math
Jump to: navigation, search
Line 50: Line 50:
 
|March 2
 
|March 2
 
|Moisés Herradón Cueto (Wisconsin)
 
|Moisés Herradón Cueto (Wisconsin)
|[[#Moisés Herradón Cueto|TBA]]
+
|[[#Moisés Herradón Cueto|Local type of difference equations]]
 
|Local
 
|Local
 
|-
 
|-
Line 146: Line 146:
  
 
In this talk I will introduce the different tensor products that exist on Tate objects over vector spaces (or more generally coherent sheaves on a given scheme). As an application, I will explain how these can be used to describe higher adeles on an n-dimensional smooth scheme. Both Tate objects and higher adeles would be introduced in the talk. (This is based on joint work with Braunling, Groechenig and Wolfson.)
 
In this talk I will introduce the different tensor products that exist on Tate objects over vector spaces (or more generally coherent sheaves on a given scheme). As an application, I will explain how these can be used to describe higher adeles on an n-dimensional smooth scheme. Both Tate objects and higher adeles would be introduced in the talk. (This is based on joint work with Braunling, Groechenig and Wolfson.)
 +
 +
===Moisés Herradón Cueto===
 +
 +
'''Local type of difference equations'''
 +
 +
The  theory  of  algebraic  differential  equations  on  the  affine  line  is  very  well-understood.  In particular, there is a well-defined notion of restricting a D-module to a formal neighborhood of a point, and these restrictions are completely described by two vector spaces, called vanishing cycles and nearby cycles, and some  maps  between them. We  give  an  analogous  notion  of "restriction  to  a formal disk" for difference equations that satisfies several desirable properties: first of all, a difference module can be recovered uniquely from its restriction to the complement of a point and its restriction to a formal disk around this point.  Secondly, it gives rise to a local Mellin transform, which relates vanishing cycles of a difference module to nearby cycles of its Mellin transform. Since the Mellin transform of a difference module is a D-module, the Mellin transform brings us back to the familiar world of D-modules.
  
 
===Harrison Chen===
 
===Harrison Chen===

Revision as of 15:59, 19 February 2018

The seminar meets on Fridays at 2:25 pm in room B113.

Here is the schedule for the previous semester.

Algebra and Algebraic Geometry Mailing List

  • Please join the AGS Mailing List to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).

Spring 2018 Schedule

date speaker title host(s)
January 26 Tasos Moulinos (UIC) Derived Azumaya Algebras and Twisted K-theory Michael
February 2 Daniel Erman (Wisconsin) TBA Local
February 8 2:30-3:30 in VV B113 Roman Fedorov (University of Pittsburgh) A conjecture of Grothendieck and Serre on principal bundles in mixed characteristic Dima
February 9 Juliette Bruce (Wisconsin) Asymptotic Syzygies in the Semi-Ample Setting Local
February 16 Andrei Caldararu (Wisconsin) Computing a categorical Gromov-Witten invariant Local
February 23 Aron Heleodoro (Northwestern) Normally ordered tensor product of Tate objects and decomposition of higher adeles Dima
March 2 Moisés Herradón Cueto (Wisconsin) Local type of difference equations Local
March 9 Eva Elduque (Wisconsin) On the signed Euler characteristic property for subvarieties of Abelian varieties Local
March 16 Harrison Chen (Berkeley) Equivariant localization for periodic cyclic homology and derived loop spaces Andrei
March 23 Phil Tosteson (Michigan) TBA Steven
April 6 Jay Yang TBA Local
April 13 Reserved Daniel
April 20 Alena Pirutka (NYU) TBA Jordan
April 27 Alexander Yom Din (Caltech) TBA Dima
May 4 John Lesieutre (UIC) TBA Daniel

Abstracts

Tasos Moulinos

Derived Azumaya Algebras and Twisted K-theory

Topological K-theory of dg-categories is a localizing invariant of dg-categories over  \mathbb{C} taking values in the  \infty -category of  KU -modules. In this talk I describe a relative version of this construction; namely for X a quasi-compact, quasi-separated  \mathbb{C} -scheme I construct a functor valued in the  \infty -category of sheaves of spectra on  X(\mathbb{C}) , the complex points of X. For inputs of the form \operatorname{Perf}(X, A) where A is an Azumaya algebra over X, I characterize the values of this functor in terms of the twisted topological K-theory of  X(\mathbb{C}) . From this I deduce a certain decomposition, for  X a finite CW-complex equipped with a bundle  P of projective spaces over  X , of  KU(P) in terms of the twisted topological K-theory of  X  ; this is a topological analogue of a result of Quillen’s on the algebraic K-theory of Severi-Brauer schemes.

Roman Fedorov

A conjecture of Grothendieck and Serre on principal bundles in mixed characteristic

Let G be a reductive group scheme over a regular local ring R. An old conjecture of Grothendieck and Serre predicts that such a principal bundle is trivial, if it is trivial over the fraction field of R. The conjecture has recently been proved in the "geometric" case, that is, when R contains a field. In the remaining case, the difficulty comes from the fact, that the situation is more rigid, so that a certain general position argument does not go through. I will discuss this difficulty and a way to circumvent it to obtain some partial results.

Juliette Bruce

Asymptotic Syzygies in the Semi-Ample Setting

In recent years numerous conjectures have been made describing the asymptotic Betti numbers of a projective variety as the embedding line bundle becomes more ample. I will discuss recent work attempting to generalize these conjectures to the case when the embedding line bundle becomes more semi-ample. (Recall a line bundle is semi-ample if a sufficiently large multiple is base point free.) In particular, I will discuss how the monomial methods of Ein, Erman, and Lazarsfeld used to prove non-vanishing results on projective space can be extended to prove non-vanishing results for products of projective space.

Andrei Caldararu

Computing a categorical Gromov-Witten invariant

In his 2005 paper "The Gromov-Witten potential associated to a TCFT" Kevin Costello described a procedure for recovering an analogue of the Gromov-Witten potential directly out of a cyclic A-inifinity algebra or category. Applying his construction to the derived category of sheaves of a complex projective variety provides a definition of higher genus B-model Gromov-Witten invariants, independent of the BCOV formalism. This has several advantages. Due to the categorical invariance of these invariants, categorical mirror symmetry automatically implies classical mirror symmetry to all genera. Also, the construction can be applied to other categories like categories of matrix factorization, giving a direct definition of FJRW invariants, for example.

In my talk I shall describe the details of the computation (joint with Junwu Tu) of the invariant, at g=1, n=1, for elliptic curves. The result agrees with the predictions of mirror symmetry, matching classical calculations of Dijkgraaf. It is the first non-trivial computation of a categorical Gromov-Witten invariant.

Aron Heleodoro

Normally ordered tensor product of Tate objects and decomposition of higher adeles

In this talk I will introduce the different tensor products that exist on Tate objects over vector spaces (or more generally coherent sheaves on a given scheme). As an application, I will explain how these can be used to describe higher adeles on an n-dimensional smooth scheme. Both Tate objects and higher adeles would be introduced in the talk. (This is based on joint work with Braunling, Groechenig and Wolfson.)

Moisés Herradón Cueto

Local type of difference equations

The theory of algebraic differential equations on the affine line is very well-understood. In particular, there is a well-defined notion of restricting a D-module to a formal neighborhood of a point, and these restrictions are completely described by two vector spaces, called vanishing cycles and nearby cycles, and some maps between them. We give an analogous notion of "restriction to a formal disk" for difference equations that satisfies several desirable properties: first of all, a difference module can be recovered uniquely from its restriction to the complement of a point and its restriction to a formal disk around this point. Secondly, it gives rise to a local Mellin transform, which relates vanishing cycles of a difference module to nearby cycles of its Mellin transform. Since the Mellin transform of a difference module is a D-module, the Mellin transform brings us back to the familiar world of D-modules.

Harrison Chen

Equivariant localization for periodic cyclic homology and derived loop spaces

There is a close relationship between derived loop spaces, a geometric object, and (periodic) cyclic homology, a categorical invariant. In this talk we will discuss this relationship and how it leads to an equivariant localization result, which has an intuitive interpretation using the language of derived loop spaces. We discuss ongoing generalizations and potential applications in computing the periodic cyclic homology of categories of equivariant (coherent) sheaves on algebraic varieties.

Alexander Yom Din

TBA