Difference between revisions of "Analysis Seminar"
(→Current Analysis Seminar Schedule) |
(→Name) |
||
Line 210: | Line 210: | ||
regularity estimate for a local operator. | regularity estimate for a local operator. | ||
− | === | + | ===Andrew Zimmer=== |
Title | Title | ||
+ | Complex analytic problems on domains with good intrinsic geometry | ||
Abstract | Abstract | ||
− | + | In this talk, I will describe a new class of domains in complex Euclidean space which is defined in terms of the existence of a Kaehler metric with good geometric properties. This class is invariant under biholomorphism and includes many well-studied classes of domains such as strongly pseudoconvex domains, finite type domains in dimension two, convex domains, homogeneous domains, and embeddings of Teichmuller spaces. Further, certain analytic problems are tractable for domains in this family even when the boundary is non-smooth. In particular, it is possible to characterize the domains in this family where dbar-Neumann operator on (0, q)-forms is compact (which generalizes an old result of Fu-Straube for convex domains). | |
===Name=== | ===Name=== |
Revision as of 19:35, 30 September 2020
The 2020-2021 Analysis Seminar will be organized by David Beltran and Andreas Seeger. It will be online at least for the Fall semester, with details to be announced in September. The regular time for the Seminar will be Tuesdays at 4:00 p.m. (in some cases we will schedule the seminar earlier, or on different days, to accomodate speakers).
Zoom links will be sent to those who have signed up for the Analysis Seminar List. For instructions how to sign up for seminar lists, see https://www.math.wisc.edu/node/230
If you'd like to suggest speakers for the spring semester please contact David and Andreas (dbeltran at math, seeger at math).
Contents
Previous_Analysis_seminars
https://www.math.wisc.edu/wiki/index.php/Previous_Analysis_seminars
Current Analysis Seminar Schedule
date | speaker | institution | title | host(s) |
---|---|---|---|---|
September 22 | Alexei Poltoratski | UW Madison | Dirac inner functions | |
September 29 | Joris Roos | University of Massachusetts - Lowell | A triangular Hilbert transform with curvature, I | |
Wednesday September 30, 4 p.m. | Polona Durcik | Chapman University | A triangular Hilbert transform with curvature, II | |
October 6 | Andrew Zimmer | UW Madison | Complex analytic problems on domains with good intrinsic geometry | |
October 13 | Hong Wang | Princeton/IAS | Title | |
October 20 | Kevin Luli | UC Davis | Title | |
October 27 | Terence Harris | Cornell University | Title | |
Monday, November 2, 4 p.m. | Yuval Wigderson | Stanford University | Title | |
November 10 | Óscar Domínguez | Universidad Complutense de Madrid | Title | |
November 17 | Tamas Titkos | BBS U of Applied Sciences and Renyi Institute | Title | |
November 24 | Shukun Wu | University of Illinois (Urbana-Champaign) | Title | |
December 1 | Jonathan Hickman | The University of Edinburgh | Title | |
December 8 | Alejandra Gaitán | Purdue University | Title | |
February 2 | Jongchon Kim | UBC | Title | |
February 9 | Bingyang Hu | Purdue University | Title | |
February 16 | David Beltran | UW - Madison | Title | |
February 23 | Title | |||
March 2 | Title | |||
March 9 | Title | |||
March 16 | Ziming Shi | Rutgers University | Title | |
March 23 | Title | |||
March 30 | Title | |||
April 6 | Title | |||
April 13 | Title | |||
April 20 | Title | |||
April 27 | Title | |||
May 4 | Title |
Abstracts
Alexei Poltoratski
Title: Dirac inner functions
Abstract: My talk will focus on some new (and old) complex analytic objects arising from Dirac systems of differential equations. We will discuss connections between problems in complex function theory, spectral and scattering problems for differential operators and the non-linear Fourier transform.
Polona Durcik and Joris Roos
Title: A triangular Hilbert transform with curvature, I & II.
Abstract: The triangular Hilbert is a two-dimensional bilinear singular originating in time-frequency analysis. No Lp bounds are currently known for this operator. In these two talks we discuss a recent joint work with Michael Christ on a variant of the triangular Hilbert transform involving curvature. This object is closely related to the bilinear Hilbert transform with curvature and a maximally modulated singular integral of Stein-Wainger type. As an application we also discuss a quantitative nonlinear Roth type theorem on patterns in the Euclidean plane. The second talk will focus on the proof of a key ingredient, a certain regularity estimate for a local operator.
Andrew Zimmer
Title
Complex analytic problems on domains with good intrinsic geometry
Abstract In this talk, I will describe a new class of domains in complex Euclidean space which is defined in terms of the existence of a Kaehler metric with good geometric properties. This class is invariant under biholomorphism and includes many well-studied classes of domains such as strongly pseudoconvex domains, finite type domains in dimension two, convex domains, homogeneous domains, and embeddings of Teichmuller spaces. Further, certain analytic problems are tractable for domains in this family even when the boundary is non-smooth. In particular, it is possible to characterize the domains in this family where dbar-Neumann operator on (0, q)-forms is compact (which generalizes an old result of Fu-Straube for convex domains).
Name
Title
Abstract
Name
Title
Abstract
Extras
Blank Analysis Seminar Template
Graduate Student Seminar:
https://www.math.wisc.edu/~sguo223/2020Fall_graduate_seminar.html