From UW-Math Wiki
Revision as of 10:23, 4 August 2015 by Spagnolie (talk | contribs) (ACMS Abstracts: Fall 2015)
Jump to: navigation, search

ACMS Abstracts: Fall 2015

Li Wang (UCLA)

Singular shocks: From particle-laden flow to human crowd dynamics

In this talk, we will present two examples in which singular shock arises. The first example, gravity-driven thin film flow with a suspension of particles down an incline, is described by a system of conservation laws equipped with an equilibrium theory for particle settling and resuspension. Singular shock appears in the high particle concentration case that relates to the particle-rich ridge observed in the experiments. We analyze the formation of the singular shock as well as its local structure, and extend to the finite volume case, which leads to a linear relationship between the shock front with time to the one-third power. The second example, a panicking crowd with a spread of fear, is modeled via ``emotional contagion”. Singular shock happens in an extreme case whose continuum limit is a pressure less Euler equation. Such system is then modified with a nonlocal alignment to regularize the singularity. We will discuss the hierarchy of models and their mathematical properties. Novel numerical methods will be presented for both examples.

Arthur Evans (UW)

Ancient art and modern mechanics: using origami design to create new materials