Difference between revisions of "Applied/ACMS/absS12"

From Math
Jump to: navigation, search
(Mike Cullen, Met. Office, UK)
Line 47: Line 47:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#DDDDDD" align="center"| '''TBA
+
| bgcolor="#DDDDDD" align="center"| '''Applications of optimal transport to geophysical problems
 
'''
 
'''
 
|-
 
|-
 
| bgcolor="#DDDDDD"|   
 
| bgcolor="#DDDDDD"|   
TBA
+
The optimal transport method can be applied to a  number of important
 +
problems in geophysical fluid dynamics, including large-scale flows in the
 +
atmosphere and ocean, equatorial waves, and the one-dimensional convective
 +
adjustment problem. In this talk I go through the basic procedures. The
 +
problem to be solved has to conserve mass and energy. The mass distribution
 +
is then regarded as a probability measure, and a metric on the space of
 +
probability measures defined (usually the Wasserstein distance). This is
 +
used via the 'Otto calculus' to define derivatives of the energy with
 +
respect to changes in the mass distribution. In the problems listed above,
 +
the governing equations can be solved by finding energy minimisers in this
 +
sense. Optimal transport theory can then be used to prove existence of
 +
minimisers. If the flow evolution can now be expressed as transport of mass
 +
by a rotated gradient, then the general theory of Ambrosio and Gangbo proves
 +
that solutions exist for all times.
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>

Revision as of 11:53, 29 February 2012

Saverio Spagnolie, Brown

Hydrodynamics of Self-Propulsion Near a Boundary: Construction of a Numerical and Asymptotic Toolbox

The swimming kinematics and trajectories of many microorganisms are altered by the presence of nearby boundaries, be they solid or deformable, and often in perplexing fashion. When an organism's swimming dynamics vary near such boundaries a question arises naturally: is the change in behavior fluid mechanical, biological, or perhaps due to other physical laws? We isolate the first possibility by exploring a far-field description of swimming organisms, providing a general framework for studying the fluid-mediated modifications to swimming trajectories. Using the simplified model we consider trapped/escape trajectories and equilibria for model organisms of varying shape and propulsive activity. This framework may help to explain surprising behaviors observed in the swimming of many microorganisms and synthetic micro-swimmers. Along the way, we will discuss the numerical tools constructed to analyze the problem of current interest, but which have considerable potential for more general applicability.


Ari Stern, UC San Diego

Numerical analysis beyond Flatland: semilinear PDEs and problems on manifolds

TBA


Mike Cullen, Met. Office, UK

Applications of optimal transport to geophysical problems

The optimal transport method can be applied to a number of important problems in geophysical fluid dynamics, including large-scale flows in the atmosphere and ocean, equatorial waves, and the one-dimensional convective adjustment problem. In this talk I go through the basic procedures. The problem to be solved has to conserve mass and energy. The mass distribution is then regarded as a probability measure, and a metric on the space of probability measures defined (usually the Wasserstein distance). This is used via the 'Otto calculus' to define derivatives of the energy with respect to changes in the mass distribution. In the problems listed above, the governing equations can be solved by finding energy minimisers in this sense. Optimal transport theory can then be used to prove existence of minimisers. If the flow evolution can now be expressed as transport of mass by a rotated gradient, then the general theory of Ambrosio and Gangbo proves that solutions exist for all times.


Ricardo Cortez, Tulane

TBA

TBA


Lukas Szpruch, Oxford

TBA

TBA


Dwight Barkley, Warwick

TBA

TBA


Organizer contact information

Sign.png


Archived semesters



Return to the Applied and Computational Mathematics Seminar Page

Return to the Applied Mathematics Group Page