# Difference between revisions of "Applied/ACMS/absS18"

(→ACMS Abstracts: Spring 2018) |
(→ACMS Abstracts: Spring 2018) |
||

Line 14: | Line 14: | ||

This talk will describe a recent result that constructs explicit and arbitrary high-order symplectic integrators for arbitrary Hamiltonians. Based on a mechanical restraint that binds two copies of phase space together, these integrators have good long time performance. More precisely, based on backward error analysis, KAM theory, and some additional multiscale analysis, a pleasant error bound is established for integrable systems. This bound is then demonstrated on a conceptual example and the Schwarzschild geodesics problem. For nonintegrable systems, some numerical experiments with the nonlinear Schrodinger equation will be discussed. | This talk will describe a recent result that constructs explicit and arbitrary high-order symplectic integrators for arbitrary Hamiltonians. Based on a mechanical restraint that binds two copies of phase space together, these integrators have good long time performance. More precisely, based on backward error analysis, KAM theory, and some additional multiscale analysis, a pleasant error bound is established for integrable systems. This bound is then demonstrated on a conceptual example and the Schwarzschild geodesics problem. For nonintegrable systems, some numerical experiments with the nonlinear Schrodinger equation will be discussed. | ||

+ | |||

+ | === Boualem Khouider (UVic) === | ||

+ | |||

+ | ''Title TBA'' | ||

+ | |||

+ | Abstract TBA |

## Revision as of 15:56, 16 January 2018

## Contents

# ACMS Abstracts: Spring 2018

### Michael Herty (RWTH-Aachen)

*Opinion Formation Models and Mean field Games Techniques*

Mean-Field Games are games with a continuum of players that incorporate the time dimension through a control-theoretic approach. Recently, simpler approaches relying on reply strategies have been proposed. Based on an example in opinion formation modeling we explore the link between differentiability notions and mean-field game approaches. For numerical purposes a model predictive control framework is introduced consistent with the mean-field game setting that allows for efficient simulation. Numerical examples are also presented as well as stability results on the derived control.

### Molei Tao (Georgia Tech)

*Explicit high-order symplectic integration of nonseparable Hamiltonians: algorithms and long time performance*

Symplectic integrators preserve the phase-space volume and have favorable performances in long time simulations. Methods for an explicit symplectic integration have been extensively studied for separable Hamiltonians (i.e., H(q,p)=K(p)+V(q)), and they lead to both accurate and efficient simulations. However, nonseparable Hamiltonians also model important problems, such as non-Newtonian mechanics and nearly integrable systems in action-angle coordinates. Unfortunately, implicit methods had been the only available symplectic approach for general nonseparable systems.

This talk will describe a recent result that constructs explicit and arbitrary high-order symplectic integrators for arbitrary Hamiltonians. Based on a mechanical restraint that binds two copies of phase space together, these integrators have good long time performance. More precisely, based on backward error analysis, KAM theory, and some additional multiscale analysis, a pleasant error bound is established for integrable systems. This bound is then demonstrated on a conceptual example and the Schwarzschild geodesics problem. For nonintegrable systems, some numerical experiments with the nonlinear Schrodinger equation will be discussed.

### Boualem Khouider (UVic)

*Title TBA*

Abstract TBA