Difference between revisions of "Colloquia/Fall18"
(661 intermediate revisions by 34 users not shown) | |||
Line 1: | Line 1: | ||
− | |||
− | |||
= Mathematics Colloquium = | = Mathematics Colloquium = | ||
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''. | All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''. | ||
− | == Spring | + | The calendar for spring 2019 can be found [[Colloquia/Spring2019|here]]. |
+ | |||
+ | ==Spring 2019== | ||
{| cellpadding="8" | {| cellpadding="8" | ||
− | !align="left" | date | + | !align="left" | date |
!align="left" | speaker | !align="left" | speaker | ||
!align="left" | title | !align="left" | title | ||
!align="left" | host(s) | !align="left" | host(s) | ||
|- | |- | ||
− | | | + | |Jan 25 |
− | | | + | | [http://www.users.miamioh.edu/randrib/ Beata Randrianantoanina] (Miami University Ohio) WIMAW |
− | | | + | |[[#Beata Randrianantoanina (Miami University Ohio) | Some nonlinear problems in the geometry of Banach spaces and their applications ]] |
− | | | + | | Tullia Dymarz |
+ | | | ||
|- | |- | ||
− | | ''' | + | |Jan 30 '''Wednesday''' |
− | | | + | | [https://services.math.duke.edu/~pierce/ Lillian Pierce] (Duke University) |
− | | | + | |[[#Lillian Pierce (Duke University) | Short character sums ]] |
− | | | + | | Boston and Street |
+ | | | ||
|- | |- | ||
− | | ''' | + | |Jan 31 '''Thursday''' |
− | | | + | | [http://www.math.tamu.edu/~dbaskin/ Dean Baskin] (Texas A&M) |
− | | | + | |[[#Dean Baskin (Texas A&M) | Radiation fields for wave equations ]] |
− | | | + | | Street |
+ | | | ||
|- | |- | ||
− | | | + | |Feb 1 |
− | | | + | | [https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke University) |
− | | | + | |[[# TBA| TBA ]] |
− | | | + | | Qin |
+ | | | ||
|- | |- | ||
− | | ''' | + | |Feb 5 '''Tuesday''' |
− | | [http://math. | + | | [http://www.math.tamu.edu/~alexei.poltoratski/ Alexei Poltoratski] (Texas A&M University) |
− | | [[ | + | |[[# TBA| TBA ]] |
− | | | + | | Denisov |
+ | | | ||
|- | |- | ||
− | | | + | |Feb 8 |
− | | | + | | [https://sites.math.northwestern.edu/~anaber/ Aaron Naber] (Northwestern) |
+ | |[[#Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds ]] | ||
+ | | Street | ||
| | | | ||
+ | |- | ||
+ | |Feb 15 | ||
+ | | | ||
+ | |[[# TBA| TBA ]] | ||
+ | | | ||
| | | | ||
|- | |- | ||
− | | | + | |Feb 22 |
− | | | + | | [https://people.math.osu.edu/cueto.5/ Angelica Cueto] (Ohio State) |
− | | | + | |[[# TBA| TBA ]] |
− | | | + | | Erman and Corey |
+ | | | ||
|- | |- | ||
− | | | + | |March 4 |
− | | [http://www.math. | + | | [http://www-users.math.umn.edu/~sverak/ Vladimir Sverak] (Minnesota) Wasow lecture |
− | | [[ | + | |[[# TBA| TBA ]] |
− | | | + | | Kim |
+ | | | ||
|- | |- | ||
− | | | + | |March 8 |
− | | [ | + | | [https://orion.math.iastate.edu/jmccullo/index.html Jason McCullough] (Iowa State) |
− | | | + | |[[# TBA| TBA ]] |
− | | | + | | Erman |
+ | | | ||
|- | |- | ||
− | | | + | |March 15 |
− | | | + | | Maksym Radziwill (Caltech) |
− | | TBA | + | |[[# TBA| TBA ]] |
− | | | + | | Marshall |
| | | | ||
|- | |- | ||
− | | March | + | |March 29 |
− | | | + | | Jennifer Park (OSU) |
− | | TBA | + | |[[# TBA| TBA ]] |
− | | | + | | Marshall |
+ | | | ||
|- | |- | ||
− | | | + | |April 5 |
− | | | + | | Ju-Lee Kim (MIT) |
− | | TBA | + | |[[# TBA| TBA ]] |
− | | | + | | Gurevich |
+ | | | ||
|- | |- | ||
− | | | + | |April 12 |
− | | | + | | Evitar Procaccia (TAMU) |
− | | TBA | + | |[[# TBA| TBA ]] |
− | | | + | | Gurevich |
+ | | | ||
|- | |- | ||
− | | | + | |April 19 |
− | |[http:// | + | | [http://www.math.rice.edu/~jkn3/ Jo Nelson] (Rice University) |
− | | TBA | + | |[[# TBA| TBA ]] |
− | | | + | | Jean-Luc |
+ | | | ||
|- | |- | ||
− | | April | + | |April 26 |
− | | University | + | | [https://www.brown.edu/academics/applied-mathematics/faculty/kavita-ramanan/home Kavita Ramanan] (Brown University) |
+ | |[[# TBA| TBA ]] | ||
+ | | WIMAW | ||
| | | | ||
+ | |- | ||
+ | |May 3 | ||
+ | | Tomasz Przebinda (Oklahoma) | ||
+ | |[[# TBA| TBA ]] | ||
+ | | Gurevich | ||
| | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
== Abstracts == | == Abstracts == | ||
− | === | + | ===Beata Randrianantoanina (Miami University Ohio)=== |
+ | |||
+ | Title: Some nonlinear problems in the geometry of Banach spaces and their applications. | ||
− | + | Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics. | |
− | + | ===Lillian Pierce (Duke University)=== | |
− | + | Title: Short character sums | |
− | + | Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations. | |
− | + | ===Dean Baskin (Texas A&M)=== | |
− | + | Title: Radiation fields for wave equations | |
− | + | Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space. | |
− | === | + | ===Aaron Naber (Northwestern)=== |
− | |||
− | |||
− | + | Title: A structure theory for spaces with lower Ricci curvature bounds. | |
− | + | Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li. | |
− | |||
− | + | == Past Colloquia == | |
− | + | [[Colloquia/Blank|Blank]] | |
− | + | [[Colloquia/Fall2018|Fall 2018]] | |
− | + | [[Colloquia/Spring2018|Spring 2018]] | |
− | + | [[Colloquia/Fall2017|Fall 2017]] | |
− | + | [[Colloquia/Spring2017|Spring 2017]] | |
− | + | [[Archived Fall 2016 Colloquia|Fall 2016]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[Colloquia/Spring2016|Spring 2016]] | |
+ | |||
+ | [[Colloquia/Fall2015|Fall 2015]] | ||
+ | |||
+ | [[Colloquia/Spring2014|Spring 2015]] | ||
[[Colloquia/Fall2014|Fall 2014]] | [[Colloquia/Fall2014|Fall 2014]] |
Latest revision as of 08:43, 24 January 2019
Contents
Mathematics Colloquium
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, unless otherwise indicated.
The calendar for spring 2019 can be found here.
Spring 2019
date | speaker | title | host(s) | |
---|---|---|---|---|
Jan 25 | Beata Randrianantoanina (Miami University Ohio) WIMAW | Some nonlinear problems in the geometry of Banach spaces and their applications | Tullia Dymarz | |
Jan 30 Wednesday | Lillian Pierce (Duke University) | Short character sums | Boston and Street | |
Jan 31 Thursday | Dean Baskin (Texas A&M) | Radiation fields for wave equations | Street | |
Feb 1 | Jianfeng Lu (Duke University) | TBA | Qin | |
Feb 5 Tuesday | Alexei Poltoratski (Texas A&M University) | TBA | Denisov | |
Feb 8 | Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds | Street | |
Feb 15 | TBA | |||
Feb 22 | Angelica Cueto (Ohio State) | TBA | Erman and Corey | |
March 4 | Vladimir Sverak (Minnesota) Wasow lecture | TBA | Kim | |
March 8 | Jason McCullough (Iowa State) | TBA | Erman | |
March 15 | Maksym Radziwill (Caltech) | TBA | Marshall | |
March 29 | Jennifer Park (OSU) | TBA | Marshall | |
April 5 | Ju-Lee Kim (MIT) | TBA | Gurevich | |
April 12 | Evitar Procaccia (TAMU) | TBA | Gurevich | |
April 19 | Jo Nelson (Rice University) | TBA | Jean-Luc | |
April 26 | Kavita Ramanan (Brown University) | TBA | WIMAW | |
May 3 | Tomasz Przebinda (Oklahoma) | TBA | Gurevich |
Abstracts
Beata Randrianantoanina (Miami University Ohio)
Title: Some nonlinear problems in the geometry of Banach spaces and their applications.
Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics.
Lillian Pierce (Duke University)
Title: Short character sums
Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations.
Dean Baskin (Texas A&M)
Title: Radiation fields for wave equations
Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space.
Aaron Naber (Northwestern)
Title: A structure theory for spaces with lower Ricci curvature bounds.
Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li.