Difference between revisions of "Graduate Algebraic Geometry Seminar Fall 2017"

From UW-Math Wiki
Jump to: navigation, search
Line 1: Line 1:
'''Wednesdays 1:30-2:30 pm, Room - TBA'''
+
'''Wednesdays 4pm, Room - Van Vleck B219'''
  
 
The purpose of this seminar is to have a talk on each week by a graduate student to help orient ourselves for the Algebraic Geometry Seminar talk on the following Friday. These talks should be aimed at beginning graduate students, and could try to explain some of the background, terminology, and ideas for the grown-up AG talk that week, or can be about whatever you have been thinking about recently.
 
The purpose of this seminar is to have a talk on each week by a graduate student to help orient ourselves for the Algebraic Geometry Seminar talk on the following Friday. These talks should be aimed at beginning graduate students, and could try to explain some of the background, terminology, and ideas for the grown-up AG talk that week, or can be about whatever you have been thinking about recently.
Line 15: Line 15:
 
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''
 
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''
 
|-
 
|-
| bgcolor="#E0E0E0"| February 13 (Wed.)
+
| bgcolor="#E0E0E0"| January 29
 +
| bgcolor="#C6D46E"| Ed Dewey
 +
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#January 29| Hitchin's System ]]
 +
|-
 +
| bgcolor="#E0E0E0"| February 5
 
| bgcolor="#C6D46E"| TBA
 
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 13| TBA ]]
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 5| TBA ]]
 
|-
 
|-
| bgcolor="#E0E0E0"| February 20 (Wed.)
+
| bgcolor="#E0E0E0"| February 12 
| bgcolor="#C6D46E"| Jeff Poskin
+
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 20| Constructing proper but non-projective varieties. ]]
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 12| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| February 27 (Wed.) 
+
| bgcolor="#E0E0E0"| February 19
 
| bgcolor="#C6D46E"| TBA
 
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 27| TBA ]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 19| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| March 6 (Wed.)
+
| bgcolor="#E0E0E0"| February 26
 
| bgcolor="#C6D46E"| TBA
 
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 6| TBA ]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#February 26| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| March 13 (Wed.)
+
| bgcolor="#E0E0E0"| March 5
 
| bgcolor="#C6D46E"| TBA
 
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 13| TBA ]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 5| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| March 20 (Wed.)
+
| bgcolor="#E0E0E0"| March 12
| bgcolor="#C6D46E"| TBA
+
| bgcolor="#C6D46E"| TBA  
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 20| TBA ]]  
+
| bgcolor="#BCE2FE"| [[Graduate Algebraic Geometry Seminar#March 12| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| March 27 (Wed.)
+
| bgcolor="#E0E0E0"| March 19
| bgcolor="#C6D46E"| Spring Break  
+
| bgcolor="#C6D46E"| Spring Break
| bgcolor="#BCE2FE"| No Seminar
+
| bgcolor="#BCE2FE"| No Seminar  
 
|-
 
|-
| bgcolor="#E0E0E0"| April 3 (Wed.)
+
| bgcolor="#E0E0E0"| March 26
 
| bgcolor="#C6D46E"| TBA
 
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 3| TBA ]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#March 26| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| April 10 (Wed.)
+
| bgcolor="#E0E0E0"| April 2
 
| bgcolor="#C6D46E"| Dima Arinkin
 
| bgcolor="#C6D46E"| Dima Arinkin
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 10| Cartier duality for commutative algebraic groups ]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 2| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| '''Time and room change: April 19 (Fri.), B305'''
+
| bgcolor="#E0E0E0"| April 9
| bgcolor="#C6D46E"| Dima Arinkin
+
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 19| Cartier duality: Part 2 ]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 9| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| April 24 (Wed.)
+
| bgcolor="#E0E0E0"| April 16
 
| bgcolor="#C6D46E"| TBA
 
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 24| TBA ]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 16| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| May 1 (Wed.)
+
| bgcolor="#E0E0E0"| April 23
| bgcolor="#C6D46E"| Andrew Bridy
+
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 1| The Artin-Mazur zeta function of a rational map in positive characteristic".]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 23| TBA ]]  
 
|-
 
|-
| bgcolor="#E0E0E0"| May 8 (Wed.)
+
| bgcolor="#E0E0E0"| April 30
 
| bgcolor="#C6D46E"| TBA
 
| bgcolor="#C6D46E"| TBA
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#May 8| TBA ]]  
+
| bgcolor="#BCE2FE"|[[Graduate Algebraic Geometry Seminar#April 30| TBA ]]  
 
|}
 
|}
 
</center>
 
</center>
  
  
== Soon! ==
+
== January 29 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Lalit Jain'''
+
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Ed Dewey'''
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: We Don't Need No Stinking Scheme
+
| bgcolor="#BCD2EE"  align="center" | Title: Hitchin's System
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: Following Mumford, we'll compute the Picard group of the (non-existent) moduli space of elliptic curves.
+
Abstract:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== February 13 ==
+
== February 5 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
Line 88: Line 92:
 
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBA'''
 
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBA'''
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title:
+
| bgcolor="#BCD2EE"  align="center" |  
 
|-
 
|-
| bgcolor="#BCD2EE"  |  
+
| bgcolor="#BCD2EE"  |
 
Abstract:
 
Abstract:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== February 20 ==
+
== February 12 ==
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Jeff Poskin'''
 
|-
 
| bgcolor="#BCD2EE"  align="center" | Title: Constructing proper but non-projective varieties.
 
|-
 
| bgcolor="#BCD2EE"  | 
 
Abstract: It is known that, above dimension 1, there exist proper varieties that are not projective.  Using the methods associated with the study of toric varieties, we give several examples and show why they must not be projective.
 
|}                                                                       
 
</center>
 
== February 27 ==
 
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
Line 118: Line 110:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== March 6 ==
+
== February 19 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
Line 130: Line 122:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== March 13 ==
+
== February 26 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
Line 142: Line 134:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== March 20 ==
+
== March 5 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
Line 154: Line 146:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== April 3 ==
+
== March 12 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
Line 166: Line 158:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== April 10 ==
+
== March 26 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Dima Arinkin'''
+
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBA'''
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Cartier duality for commutative algebraic groups
+
| bgcolor="#BCD2EE"  align="center" | Title:  
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: The Cartier duality is an algebraic version of the Pontryagin duality. A finite commutative group may be viewed either as a locally compact group or as a discrete algebraic group. Accordingly,  its dual can be interpreted in the topological way (the Pontryagin dual: the group of continuous characters to U(1)) or in the algebraic way (the Cartier dual: the group of regular characters to the multiplicative group). The Cartier duality extends to a beautiful and non-trivial correspondence on a wider class of affine commutative algebraic groups; this is similar to the extension of the Pontryagin duality from finite groups to locally compact groups.
+
Abstract:  
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== April 19 ==
+
== April 2 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Dima Arinkin'''
+
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBA'''
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | Title: Cartier duality II
+
| bgcolor="#BCD2EE"  align="center" | Title:  
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
Abstract: This is a continuation of my talk last week. The goal is to extend the Cartier duality to infinite commutative algebraic groups (and group ind-schemes). I will consider several examples, concluding with the one that is perhaps most spectacular: the Contou-Carrere symbol (the algebro-geometric version of the Hilbert symbol).
+
Abstract:  
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== April 24 ==
+
== April 9 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
Line 202: Line 194:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== May 1 ==
+
== April 16 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
Line 214: Line 206:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
== May 8 ==
+
== April 23 ==
 +
<center>
 +
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 +
|-
 +
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''TBA'''
 +
|-
 +
| bgcolor="#BCD2EE"  align="center" | Title:
 +
|-
 +
| bgcolor="#BCD2EE"  | 
 +
Abstract:
 +
|}                                                                       
 +
</center>
 +
== April 30 ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"

Revision as of 16:10, 29 January 2014

Wednesdays 4pm, Room - Van Vleck B219

The purpose of this seminar is to have a talk on each week by a graduate student to help orient ourselves for the Algebraic Geometry Seminar talk on the following Friday. These talks should be aimed at beginning graduate students, and could try to explain some of the background, terminology, and ideas for the grown-up AG talk that week, or can be about whatever you have been thinking about recently.

Give a talk!

We need volunteers to give talks this semester. If you're interested contact Nathan. Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material.

Fall 2012 Semester

Date Speaker Title (click to see abstract)
January 29 Ed Dewey Hitchin's System
February 5 TBA TBA
February 12 TBA TBA
February 19 TBA TBA
February 26 TBA TBA
March 5 TBA TBA
March 12 TBA TBA
March 19 Spring Break No Seminar
March 26 TBA TBA
April 2 Dima Arinkin TBA
April 9 TBA TBA
April 16 TBA TBA
April 23 TBA TBA
April 30 TBA TBA


January 29

Ed Dewey
Title: Hitchin's System

Abstract:

February 5

TBA

Abstract:

February 12

TBA
Title:

Abstract:

February 19

TBA
Title:

Abstract:

February 26

TBA
Title:

Abstract:

March 5

TBA
Title:

Abstract:

March 12

TBA
Title:

Abstract:

March 26

TBA
Title:

Abstract:

April 2

TBA
Title:

Abstract:

April 9

TBA
Title:

Abstract:

April 16

Andrew Bridy
Title: The Artin-Mazur zeta function of a rational map in positive characteristic".

Abstract: TBA

April 23

TBA
Title:

Abstract:

April 30

TBA
Title:

Abstract: