Difference between revisions of "Graduate Logic Seminar"

From UW-Math Wiki
Jump to: navigation, search
Line 1: Line 1:
The Graduate Logic Seminar is an informal space where graduate student and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
+
The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
  
 
* '''When:''' Mondays 4p-5p
 
* '''When:''' Mondays 4p-5p

Revision as of 14:29, 24 September 2020

The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.

  • When: Mondays 4p-5p
  • Where: on line (ask for code).
  • Organizers: Jun Le Goh

The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.

Sign up for the graduate logic seminar mailing list: join-grad-logic-sem@lists.wisc.edu

Fall 2020 - Tentative schedule

September 14 - Josiah Jacobsen-Grocott

Title: Degrees of points in topological spaces

Abstract: An overview of some results from Takayuki Kihara, Keng Meng Ng, and Arno Pauly in their paper Enumeration Degrees and Non-Metrizable Topology. We will look at a range of topological spaces and the corresponding classes in the enumeration degrees as well as ways in which we can distinguish the type of classes using the separation axioms.

September 21

No seminar (yet)

September 28 - James Hanson

Title: The Semilattice of Definable Sets in Continuous Logic

Abstract: After an analysis-free exposition of definable sets in continuous logic, we will present a fun, illustrated proof that any finite bounded lattice can be the poset of definable subsets of $S_1(T)$ for a continuous theory $T$.

October 5

Short talk by Tejas Bhojraj at 3:30PM

Another short talk slot available

Previous Years

The schedule of talks from past semesters can be found here.