Difference between revisions of "Graduate Logic Seminar"

From UW-Math Wiki
Jump to: navigation, search
(Fall 2020 - Tentative schedule)
(February 16 3:30PM - Short talk by Sarah Reitzes (University of Chicago))
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
 
The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
  
* '''When:''' Mondays 4p-5p
+
* '''When:''' TBA
 
* '''Where:''' on line (ask for code).
 
* '''Where:''' on line (ask for code).
 
* '''Organizers:''' [https://www.math.wisc.edu/~jgoh/ Jun Le Goh]
 
* '''Organizers:''' [https://www.math.wisc.edu/~jgoh/ Jun Le Goh]
Line 9: Line 9:
 
Sign up for the graduate logic seminar mailing list:  join-grad-logic-sem@lists.wisc.edu
 
Sign up for the graduate logic seminar mailing list:  join-grad-logic-sem@lists.wisc.edu
  
== Fall 2020 - Tentative schedule ==
+
== Spring 2021 - Tentative schedule ==
  
=== September 14 - Josiah Jacobsen-Grocott ===
+
=== February 16 3:30PM - Short talk by Sarah Reitzes (University of Chicago) ===
  
Title: Degrees of points in topological spaces
+
Title: Reduction games over $\mathrm{RCA}_0$
  
Abstract: An overview of some results from Takayuki Kihara, Keng Meng Ng, and Arno Pauly in their paper Enumeration Degrees and Non-Metrizable Topology. We will look at a range of topological spaces and the corresponding classes in the enumeration degrees as well as ways in which we can distinguish the type of classes using the separation axioms.
+
Abstract: In this talk, I will discuss joint work with Damir D. Dzhafarov and Denis R. Hirschfeldt. Our work centers on the characterization of problems P and Q such that P $\leq_{\omega}$ Q, as well as problems P and Q such that $\mathrm{RCA}_0 \vdash$ Q $\to$ P, in terms of winning strategies in certain games. These characterizations were originally introduced by Hirschfeldt and Jockusch. I will discuss extensions and generalizations of these characterizations, including a certain notion of compactness that allows us, for strategies satisfying particular conditions, to bound the number of moves it takes to win. This bound is independent of the instance of the problem P being considered. This allows us to develop the idea of Weihrauch and generalized Weihrauch reduction over some base theory. Here, we will focus on the base theory $\mathrm{RCA}_0$. In this talk, I will explore these notions of reduction among various principles, including bounding and induction principles.
 
 
=== September 28 - James Hanson ===
 
 
 
Title: The Semilattice of Definable Sets in Continuous Logic
 
 
 
Abstract: After an analysis-free exposition of definable sets in continuous logic, we will present a fun, illustrated proof that any finite bounded lattice can be the poset of definable subsets of $S_1(T)$ for a continuous theory $T$.
 
 
 
=== October 5 - Tejas Bhojraj from 3:30PM-4:00PM ===
 
 
 
Title: A Levin-Schnorr type result for Weak Solovay random states.
 
 
 
Abstract: We look at the initial-segment complexity of Weak Solovay quantum random states using MK, a prefix-free version of quantum Kolmogorov complexity. The statement of our result is similar to the Levin-Schnorr theorem in classical algorithmic randomness.
 
 
 
=== November 9 - Karthik Ravishankar ===
 
 
 
Title, abstract TBA
 
 
 
=== November 16 - Karthik Ravishankar ===
 
 
 
Title, abstract TBA
 
 
 
=== Tuesday, November 24 - Tonicha Crook (Swansea University) from 9:00AM-10:00AM ===
 
 
 
Title, abstract TBA
 
 
 
=== November 30 - Yvette Ren ===
 
 
 
Title, abstract TBA
 
  
 
==Previous Years==
 
==Previous Years==
  
 
The schedule of talks from past semesters can be found [[Graduate Logic Seminar, previous semesters|here]].
 
The schedule of talks from past semesters can be found [[Graduate Logic Seminar, previous semesters|here]].

Latest revision as of 11:11, 28 January 2021

The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.

  • When: TBA
  • Where: on line (ask for code).
  • Organizers: Jun Le Goh

The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.

Sign up for the graduate logic seminar mailing list: join-grad-logic-sem@lists.wisc.edu

Spring 2021 - Tentative schedule

February 16 3:30PM - Short talk by Sarah Reitzes (University of Chicago)

Title: Reduction games over $\mathrm{RCA}_0$

Abstract: In this talk, I will discuss joint work with Damir D. Dzhafarov and Denis R. Hirschfeldt. Our work centers on the characterization of problems P and Q such that P $\leq_{\omega}$ Q, as well as problems P and Q such that $\mathrm{RCA}_0 \vdash$ Q $\to$ P, in terms of winning strategies in certain games. These characterizations were originally introduced by Hirschfeldt and Jockusch. I will discuss extensions and generalizations of these characterizations, including a certain notion of compactness that allows us, for strategies satisfying particular conditions, to bound the number of moves it takes to win. This bound is independent of the instance of the problem P being considered. This allows us to develop the idea of Weihrauch and generalized Weihrauch reduction over some base theory. Here, we will focus on the base theory $\mathrm{RCA}_0$. In this talk, I will explore these notions of reduction among various principles, including bounding and induction principles.

Previous Years

The schedule of talks from past semesters can be found here.