Difference between revisions of "Madison Math Circle Abstracts"

From UW-Math Wiki
Jump to: navigation, search
(October 17 2016)
(October 24 2016)
Line 105: Line 105:
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''TBD'''
+
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Ethan Beihl'''
 
|-
 
|-
| bgcolor="#BDBDBD"  align="center" | '''Title: TBD'''
+
| bgcolor="#BDBDBD"  align="center" | '''Title: A Chocolate Bar for Every Real Number'''
 
|-
 
|-
 
| bgcolor="#BDBDBD"  |   
 
| bgcolor="#BDBDBD"  |   
TBD
+
By chopping up rectangles into squares repeatedly we obtain so-called "slicing diagrams" that correspond to every number. These diagrams have some very cool properties, and show up all over mathematics (under the name "continued fractions," which name we will investigate). Some questions I may ask you: Which chocolate bars look like themselves? Which chocolate bars look like themselves, except bigger? Which chocolate bars are interesting? Why did you come to a math talk expecting real chocolate?
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>

Revision as of 22:15, 4 October 2016

Logo.png

August 6 2016

Science Saturday
Title: Game Busters

The goal of our station will be to explore the mathematics related to the games: Set, Nim, and Chomp. We will have stations where individuals can drop by play a few games and explore these games for themselves. (We will have worksheets and volunteers providing guidance.) Additionally, anyone will be able to challenge our Master of Nim with fun prizes available for beating them. (Note: This is at a special time and location.)

September 12 2016

Jean-Luc Thiffeault
Title: Why do my earbuds keep getting entangled?

I'll discuss the mathematics of random entanglements. Why is it that it's so easy for wires to get entangled, but so hard for them to detangle?

September 19 2016

DJ Bruce
Title: Is Any Knot Not the Unknot?

You're walking home from school, and you pull out your head phones to listen to some tunes. However, inevitably they are a horribly tangled mess, but are they really a knot? We'll talk about what exactly is a knot, and how we can tell when something is not the unknot.

September 26 2016

Megan Maguire
Title: Coloring Maps

Have you ever noticed that in colored maps of the US bordering states are never the same color? That's because it would be super confusing! But how many different colors do we need in order to avoid this? Come find out and learn more cool things about coloring maps.

October 3 2016

Zach Charles
Title: 1 + 1 = 10, or How does my smartphone do anything?

Computers are used to do all kinds of complex tasks, from playing videos to running internet browsers. Secretly, computers do everything through numbers and mathematics. Surprisingly, they do all of this with "bits", numbers that are only 0 or 1. We will talk about bits and how we use them to do the mathematics we're familiar with as humans. If we have enough time, we will discuss "addition chains" and how computers use them to speed up their computations.

October 10 2016

Keith Rush
Title: Randomness, determinism and approximation: a historical question

If you give me a function, can I find a simple function that approximates it well? This question played a central role in the development of mathematics. With a couple examples we will begin to investigate this for ourselves, and we'll touch on some interesting relationships to modeling random processes.

October 17 2016

Philip Wood
Title: The game of Criss-Cross

Some say that mathematics is the science of patterns, and patterns are everywhere. You can find some remarkable patterns just by drawing lines connecting dots, and that is just what we will do in the game of Criss-Cross! Bring your pencils and be ready to play.

October 24 2016

Ethan Beihl
Title: A Chocolate Bar for Every Real Number

By chopping up rectangles into squares repeatedly we obtain so-called "slicing diagrams" that correspond to every number. These diagrams have some very cool properties, and show up all over mathematics (under the name "continued fractions," which name we will investigate). Some questions I may ask you: Which chocolate bars look like themselves? Which chocolate bars look like themselves, except bigger? Which chocolate bars are interesting? Why did you come to a math talk expecting real chocolate?

October 31 2016

n/a
Title: No Meeting

Enjoy Halloween.

November 7 2016

TBD
Title: TBD

TBD

November 14 2016

TBD
Title: TBD

TBD

November 21 2016

TBD
Title: TBD

TBD

High School Meetings