Difference between revisions of "Madison Math Circle Abstracts"

From UW-Math Wiki
Jump to: navigation, search
Line 269: Line 269:
  
 
= High School Meetings =
 
= High School Meetings =
== October 17 2016 (JMM) ==
+
== Date TBD (High School TBD) ==
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Daniel Erman'''
+
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Speaker TBD'''
 
|-
 
|-
| bgcolor="#BDBDBD"  align="center" | '''Title:  What does math research look like?'''
+
| bgcolor="#BDBDBD"  align="center" | '''Title:  TBD'''
 
|-
 
|-
 
| bgcolor="#BDBDBD"  |   
 
| bgcolor="#BDBDBD"  |   
Using a concrete problem in combinatorics, I will try to give a feel for what math research looks like.  We’ll discuss the various aspects of research including:  gathering data, making conjectures, proving special cases, and asking new questions.
+
Abstract TBD
  
 
|}                                                                         
 
|}                                                                         
</center>
 
 
== October 24 2016 (West) ==
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
 
|-
 
| bgcolor="#BDBDBD"  align="center" | '''Title:  Shhh, This Message is Secret'''
 
|-
 
| bgcolor="#BDBDBD"  | 
 
gur pbearefgbar bs gur zbqrea jbeyq eribyirf nebhaq orvat noyr gb rnfvyl pbzzhavpngr frpergf, jurgure gubfr frpergf or perqvg pneq ahzoref ba nznmba, grkg zrffntrf ba lbhe vcubar, be frpher tbireazrag nssnvef. va guvf gnyx jr jvyy rkcyber gur zngu haqrecvaavat bhe novyvgl gb qb guvf, naq frr whfg ubj fgheql gung pbearefgbar npghnyyl znl or.
 
 
|}                                                                       
 
</center>
 
 
== October 31 2016 (East)==
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
 
|-
 
| bgcolor="#BDBDBD"  align="center" | '''Title:  Shhh, This Message Is Secret'''
 
|-
 
| bgcolor="#BDBDBD"  | 
 
gur pbearefgbar bs gur zbqrea jbeyq eribyirf nebhaq orvat noyr gb rnfvyl pbzzhavpngr frpergf, jurgure gubfr frpergf or perqvg pneq ahzoref ba nznmba, grkg zrffntrf ba lbhe vcubar, be frpher tbireazrag nssnvef. va guvf gnyx jr jvyy rkcyber gur zngu haqrecvaavat bhe novyvgl gb qb guvf, naq frr whfg ubj fgheql gung pbearefgbar npghnyyl znl or.
 
|}                                                                       
 
</center>
 
 
== December 5 2016 (JMM) ==
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Philip Matchett Wood'''
 
|-
 
| bgcolor="#BDBDBD"  align="center" | '''Title:  The game of Criss-Cross'''
 
|-
 
| bgcolor="#BDBDBD"  | 
 
Some say that mathematics is the science of patterns, and patterns are everywhere.  You can find some remarkable patterns just by drawing lines connecting dots, and that is just what we will do in the game of Criss-Cross!  Bring your pencils and be ready to play.
 
 
|}                                                                       
 
</center>
 
 
== December 5 2016 (East) ==
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Uri Andrews'''
 
|-
 
| bgcolor="#BDBDBD"  align="center" | '''Title:  How to split an apartment'''
 
|-
 
| bgcolor="#BDBDBD"  | 
 
So you go off to college and after a year or two, you and some of your friends decide to get an apartment together. It'll be a lot of fun living with your best friends. Then move-in day comes, and you realize that everyone wants the room by the kitchen (for easy late-night snacking). You have 4 rooms and 4 people. Surely there must be some way to make everybody happy. People are willing to settle for their second-favorite room instead if maybe they pay a little less rent or do some less chores. How do you navigate this issue to make everybody happy? I'll share a way to do this based on a mathematical theorem which also explains the following fact: If you stir up a cup of hot chocolate, when the liquid has come to rest, some point in the liquid will end up in exactly the same place in the cup as before you stirred it.
 
 
|}                                                                       
 
</center>
 
 
== February 13 2017 (East) ==
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Eva Elduque'''
 
|-
 
| bgcolor="#BDBDBD"  align="center" | '''Title:  Pick's Theorem'''
 
|-
 
| bgcolor="#BDBDBD"  | 
 
In this talk, we will work to discover a beautiful formula that allows us to quickly and easily compute the area of a polygon whose vertices are points of a grid. We will prove that this formula works!
 
|}                                                                       
 
</center>
 
 
== February 20 2017 (JMM) ==
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Megan Maguire'''
 
|-
 
| bgcolor="#BDBDBD"  align="center" | '''Title:  Coloring Maps'''
 
|-
 
| bgcolor="#BDBDBD"  | 
 
Have you ever noticed that in colored maps of the US bordering states are never the same color? That's because it would be super confusing! But how many different colors do we need in order to avoid this? Come find out and learn more cool things about coloring maps.
 
|}
 
</center>
 
 
== March 20 2017 (East) ==
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''DJ Bruce'''
 
|-
 
| bgcolor="#BDBDBD"  align="center" | '''Title:  Doodling Daydreams'''
 
|-
 
| bgcolor="#BDBDBD"  | 
 
As a high schooler I occasionally got bored, would zone out, and would doodle on my paper. Often repeatedly tracing around something on my paper creating doodles like this:
 
<gallery widths=300px heights=150px mode="packed">
 
File:doodle.jpg
 
</gallery>
 
 
In this bored state my mind would often wander, and I would wonder about important things like "Will I have a date for prom?" or "What is the cafeteria serving for lunch?", but germane to this talk were my wonderings about, "What’s happening to the shape of this doodle?" It turns out that these idle daydreams and doodles provide a good taste for how mathematicians "do" math. We will start by doodling and asking questions, and then we'll see where these lead us mathematically.
 
|}                                                                       
 
</center>
 
 
== April 3 2017 (JMM) ==
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
| bgcolor="#e8b2b2" align="center" style="font-size:125%" | '''Polly Yu'''
 
|-
 
| bgcolor="#BDBDBD"  align="center" | '''Title:  Are we there yet?'''
 
|-
 
| bgcolor="#BDBDBD"  | 
 
When you are told to clean your room, you have to first clean half of it; then half of what's left, and half of what's left, and so on. Seems like you will never be done! In fact, an ancient Greek philosopher, Zeno, used an argument like this to claim that it is impossible to move! Disclaimer: we are not saying that it's impossible to clean your room. What we will do is look at a special case of adding infinitely many numbers together, and use the resulting formula to calculate areas of fractals.
 
|}
 
 
</center>
 
</center>

Revision as of 16:26, 25 August 2017

Logo.png

Main Math Circle Page


September 18 2017

Speaker
Title: TBD

Abstract

September 25 2017

Speaker
Title: TBD

Abstract

October 2 2017

Speaker
Title: TBD

Abstract

October 9 2017

Speaker
Title: TBD

Abstract

October 16 2017

Speaker
Title: TBD

Abstract

October 23 2017

Speaker
Title: TBD

Abstract

October 30 2017

Speaker
Title: TBD

Abstract

November 6 2017

Speaker
Title: TBD

Abstract

November 13 2017

Speaker
Title: TBD

Abstract


November 20 2017

Speaker
Title: TBD

Abstract

January 29 2018

Speaker
Title: TBD

Abstract

February 5 2018

Speaker
Title: TBD

Abstract

February 12 2018

Speaker
Title: TBD

Abstract

February 19 2018

Speaker
Title: TBD

Abstract

February 26 2018

Speaker
Title: TBD

Abstract

March 5 2018

Speaker
Title: TBD

Abstract

March 12 2018

Speaker
Title: TBD

Abstract

March 19 2018

Speaker
Title: TBD

Abstract

April 2 2018

Speaker
Title: TBD

Abstract

April 9 2018

Speaker
Title: TBD

Abstract


High School Meetings

Date TBD (High School TBD)

Speaker TBD
Title: TBD

Abstract TBD