# Difference between revisions of "NTS"

(→Fall 2020 Semester) |
Ashankar22 (talk | contribs) (→Fall 2020 Semester) |
||

(5 intermediate revisions by 2 users not shown) | |||

Line 40: | Line 40: | ||

| bgcolor="#E0E0E0" align="center" | Sep 24 | | bgcolor="#E0E0E0" align="center" | Sep 24 | ||

| bgcolor="#F0B0B0" align="center" | Yousheng Shi | | bgcolor="#F0B0B0" align="center" | Yousheng Shi | ||

− | | bgcolor="#BCE2FE"|[https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTFall2020# | + | | bgcolor="#BCE2FE"|[https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTFall2020#Sep_24 Kudla Rapoport conjecture over the ramified primes] |

|- | |- | ||

|- | |- | ||

| bgcolor="#E0E0E0" align="center" | Oct 1 | | bgcolor="#E0E0E0" align="center" | Oct 1 | ||

| bgcolor="#F0B0B0" align="center" | Liyang Yang | | bgcolor="#F0B0B0" align="center" | Liyang Yang | ||

− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"|[https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTFall2020#Oct_1 Average Central L-values on U(2,1)$\times$ U(1,1), Nonvanishing and Subconvexity] |

|- | |- | ||

| bgcolor="#E0E0E0" align="center" | Oct 7 (Wed. at 7pm) | | bgcolor="#E0E0E0" align="center" | Oct 7 (Wed. at 7pm) | ||

| bgcolor="#F0B0B0" align="center" | Shamgar Gurevich (UW - Madison) | | bgcolor="#F0B0B0" align="center" | Shamgar Gurevich (UW - Madison) | ||

| bgcolor="#BCE2FE"|Harmonic Analysis on GLn over Finite Fields | | bgcolor="#BCE2FE"|Harmonic Analysis on GLn over Finite Fields | ||

− | ( | + | (Register at https://uni-sydney.zoom.us/meeting/register/tJAocOGhqjwiE91DEddxUhCudfQX5mzp-cPQ) |

|- | |- | ||

| bgcolor="#E0E0E0" align="center" | Oct 15 | | bgcolor="#E0E0E0" align="center" | Oct 15 | ||

− | | bgcolor="#F0B0B0" align="center" | Yujie Xu | + | | bgcolor="#F0B0B0" align="center" | [http://people.math.harvard.edu/~yujiex/ Yujie Xu] |

− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"| [https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTFall2020#Oct_15 On normalization in the integral models of Shimura varieties of Hodge type] |

+ | (Register at https://harvard.zoom.us/meeting/register/tJYlduqrrDgqGNRmtfw245PNXp_XGCzMlkYm) | ||

|- | |- | ||

| bgcolor="#E0E0E0" align="center" | Oct 22 | | bgcolor="#E0E0E0" align="center" | Oct 22 | ||

| bgcolor="#F0B0B0" align="center" | Artane Siad | | bgcolor="#F0B0B0" align="center" | Artane Siad | ||

− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"| [https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTFall2020#Oct_22 Average 2-torsion in the class group of monogenic fields] |

+ | |||

|- | |- | ||

| bgcolor="#E0E0E0" align="center" | Oct 29 | | bgcolor="#E0E0E0" align="center" | Oct 29 |

## Latest revision as of 12:25, 19 October 2020

## Contents

# Number Theory / Representation Theory Seminar, University of Wisconsin - Madison

**When:**Thursdays, 2:30 PM – 3:30 PM**Where:**Van Vleck B321 or remotely- Please join the NT/RT mailing list: (you must be on a math department computer to use this link).

There is also an accompanying graduate-level seminar, which meets on Tuesdays.

You can find our Spring 2020 speakers in Spring 2020.

You can find our Fall 2019 speakers in Fall 2019.

You can find our Spring 2019 speakers in Spring 2019.

You can find our previous speakers in Fall 2018.

# Fall 2020 Semester

*to be confirmed

# Organizer contact information

Yousheng Shi Yousheng Shi:shi58@wisc.edu

Ananth Shankar Ananth Shankar:ashankar@math.wisc.edu

# VaNTAGe

This is a virtual math seminar on open conjectures in number theory and arithmetic geometry. The seminar will be presented in English at (1 pm Eastern time)=(10 am Pacific time), every first and third Tuesday of the month. The Math Department of UW, Madison broadcasts the seminar in the math lounge room at Room 911, Van Vleck Building. For more information, please visit the official website: VaNTAGe

# New Developments in Number Theory

This is a new seminar series that features the work of early career number theorists from around the globe. For more information, please visit the official website: NDNT

Return to the Algebra Group Page